Paper:
An ER Microactuator with Built-in Pump and Valve
Kazuhiro Yoshida, Tomohisa Muto, Joon-Wan Kim,
and Shinichi Yokota
Tokyo Institute of Technology, R2-42, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- [1] M. Takeda, “Applications of MEMS to Industrial Inspection,” Technical Digest of MEMS 2001, pp. 181-191, 2001.
- [2] K. Yoshida, K. Takahashi, and S. Yokota, “An In-Pipe Mobile Micromachine Using Fluid Power (A Mechanism Adaptable to Pipe Diameters),” JSME Int. J.(Ser. B), Vol.43, No.1, pp. 29-35, 2000.
- [3] K. Yoshida and S. Yokota, “Study on High-Power Micro-Actuator Using Fluid Power,” Preprints of 6th Int. Conf. on Flow Measurement (FLOMEKO’93), Vol.1, pp. 122-130, 1993.
- [4] M. Kohl, “Fluidic Actuation by Electrorheological Microdevices,” Mechatronics, Vol.10, Issues 4-5, pp. 583-594, 2000.
- [5] K. Yoshida, M. Kikuchi, J.-H. Park, and S. Yokota, “Fabrication of Micro Electro-Rheological Valves (ER Valves) by Micromachining and Experiments,” Sensors and Actuators A, Vol.95, Issues 2-3, pp. 227-233, 2002.
- [6] M. De Volder, K. Yoshida, S. Yokota, and D. Reynaerts, “The Use of Liquid Crystals as Electrorheological Fluids in Microsystems: Model and Measurements,” J. of Micromechanics and Microengineering, Vol.16, No.3, pp. 612-619, 2006.
- [7] A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, “Latest Developments in Micro Total Analysis Systems,” Analytical Chemistry, Vol.82, No.12, pp. 4830-4847, 2010.
- [8] J.-H. Park, K. Yoshida, and S. Yokota, “Resonantly Driven Piezoelectric Micropump – Fabrication of a Micropump Having High Power Density –,” Mechatronics, Vol.9, Issue 7, pp. 687-702, 1999.
- [9] T. Seto, K. Takagi, K. Yoshida, J.-H. Park, and S. Yokota, “Development of High-Power Micropump Using Inertia Effect of Fluid for Small-Sized Fluid Actuators,” J. of Robotics and Mechatronics, Vol.15, No.2, pp. 128-135, 2003.
- [10] K. Yoshida, Y.-O. Jung, T. Seto, K. Takagi, J.-H. Park, and S. Yokota, “A Piezoelectric Micropump Using Fluid Inertia in Pipe and Its Application,” Proc. 7th JFPS Int. Symp. on Fluid Power, Tsukuba 2005, pp. 688-693, 2005.
- [11] For example, A. Khanicheh, D. Mintzopoulos, B. Weinberg, A. A. Tzika, and C. Mavroidis, “Evaluation of Electrorheological Fluid Dampers for Applications at 3-T MRI Environment,” IEEE/ASME Trans. on Mechatronics, Vol.13, No.3, pp. 286-294, 2008.
- [12] For example, K. P. Tan, R. Stanway, and W. A. Bullough, “Validation of Dynamic Torque Response of an Electrorheological (ER) Clutch,” Mechanical Systems and Signal Processing, Vol.20, Issue 2, pp. 463-492, 2006.
- [13] J. Furusho and M. Sakaguchi, “New Actuators Using ER Fluid and Their Applications to Force Display Devices in Virtual Reality and Medical Treatments,” Int. J. of Modern Physics B, Vol.13, Nos.14-16, pp. 2151-2159, 1999.
- [14] K. Yoshida, J.-H. Park, H. Yano, S. Yokota, and S. Yun, “Study of Valve-Integrated Microactuator Using Homogeneous Electro-Rheological Fluid,” Sensors and Materials, Vol.17, Issue 3, pp. 97-112, 2005.
- [15] J.-W. Kim, K. Yoshida, K. Kouda, and S. Yokota, “A Flexible Electro-Rheological Microvalve (FERV) Based on SU-8 Cantilever Structures and Its Application to Microactuators,” Sensors and Actuators A, Vol.156, Issue 2, pp. 366-372, 2009.
- [16] K. Yoshida, T. Anzai, J.-W. Kim, and S. Yokota, “A Micro Rolling Diaphragm Actuator Equipped with an ER Valve,” Proc. of 14th Int. Conf. on Mechatronics Technology (ICMT 2010), pp. 147-151, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.