Paper:
Numerical Simulation of a Slipper Model for Swash Plate Type Axial Piston Pumps and Motors: Effects of Concave and Convex Surface Geometry
Toshiharu Kazama and Yukihito Narita
College of Design and Manufacturing Technology, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
- [1] N. Iboshi and A. Yamaguchi, “Characteristics of a Slipper Bearing for Swash Plate Type Axial Piston Pumps and Motors,” Bulletin of Japan Society of Mechanical Engineers, Vol.29, pp. 2539-2546, 1986.
- [2] J. A. Williams, “Engineering Tribology,” Oxford Science Publications, 1996.
- [3] B. J. Hamrock, “Fundamentals of Fluid Film Lubrication,” McGraw-Hill, 1994.
- [4] A. Yamaguchi and H. Matsuoka, “A Mixed Lubrication Model Applicable to Bearing/Seal Parts of Hydraulic Equipment,” J. of Tribology, Trans. of American Society of Mechanical Engineers, 114, pp. 116-121, 1992.
- [5] J. A. Greenwood and J. B. P. Williamson, “Contact of Nominally Flat Surfaces,” Proc. of Royal Society, London, Ser. A, 295, pp. 300-319, 1996.
- [6] N. Patir and H. S. Cheng, “An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication,” J. of Lubrication Technology, Trans. of American Society of Mechanical Engineers, 100, pp. 12-17, 1978.
- [7] N. Patir and H. S. Cheng, “Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces,” J. of Lubrication Technology, Trans. of American Society of Mechanical Engineers, 101, pp. 220-230, 1979.
- [8] T. Kazama and A. Yamaguchi, “Experiment on Mixed Lubrication of Hydrostatic Thrust Bearings for Hydraulic Equipment,” J. of Lubrication Technology, Trans. of American Society of Mechanical Engineers, 117, pp. 399-402, 1995.
- [9] T. Kazama and A. Yamaguchi, “Application of AMixed Lubrication Model for Hydrostatic Thrust Bearings of Hydraulic Equipment,” J. of Tribology, Trans. of American Society of Mechanical Engineers, 115, pp. 686-691, 1993.
- [10] T. Kazama, “Numerical Simulation of A Slipper Model for Water Hydraulic Pumps/Motors in Mixed Lubrication,” Proc. of 6th Japan Fluid Power Systems Society International Symposium on Fluid Power, Tsukuba, CD-ROM, 2C4-5, 2005.
- [11] S. Kumar, J. M. Bergada, and J. Watton, “Axial Piston Pump Grooved Slipper Analysis by CFD Simulation of Three-Dimensional NVS Equation in Cylindrical Coordinates,” Computers & Fluids, 38, pp. 648-663, 2009.
- [12] K. L. Johnson, J. A. Greenwood, and S. Y. Poon, “Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication,” Wear, 19, pp. 91-108, 1972.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.