single-au.php

IJAT Vol.6 No.3 pp. 369-376
doi: 10.20965/ijat.2012.p0369
(2012)

Paper:

Audio-Tactile Feedback Mechanisms for Multi-Touch HMI Panels of Production Engineering Systems

Christian Brecher, Daniel Kolster, and Werner Herfs

Machine Tool Laboratory, RWTH Aachen University, Steinbachstr. 19, 52074 Aachen, Germany

Received:
December 13, 2011
Accepted:
February 22, 2012
Published:
May 5, 2012
Keywords:
haptic feedback, multi-touch interaction, HMI panel, machine tool handling, virtual touch
Abstract

Over the last decade, touch screen interaction has been gaining wide acceptance in information technology and daily consumer products. Accordingly, first approaches to applications and devices for production engineering systems are now entering the market. Although they employ intuitive user concepts, touch screens for industrial HMI panels still lack haptic feedback. Since operators observes the machining process and machine handling is often done blind, false handling or wrong input signalsmay damagemachines or injure human workers. With this in mind, this paper presents a haptic feedback mechanism for touch-based interaction. A user evaluation performed on the developed system unveils increasing input security and thus an enhanced user experience.

Cite this article as:
C. Brecher, D. Kolster, and W. Herfs, “Audio-Tactile Feedback Mechanisms for Multi-Touch HMI Panels of Production Engineering Systems,” Int. J. Automation Technol., Vol.6, No.3, pp. 369-376, 2012.
Data files:
References
  1. [1] K. J. Kuchenbecker, J. Gewirtz, W. McMahan, D. Standish, P. Martin, J. Bohren, P. J. Mendoza, and D. I. Lee, “VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery,” Proc. of Int. Conf. on Generating and perceiving tangible sensations, EuroHaptics, pp. 189-196, 2010.
  2. [2] K.-U. Kyung, J.-Y. Lee, and M. A. Srinivasan, “Precise manipulation of GUI on a touch screen with haptic cues,” Proc. of Third Joint EuroHaptics conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 202-207, 2009.
  3. [3] W.McMahan and K. J. Kuchenbecker, “Displaying realistic contact accelerations via a dedicated vibration actuator,” Proc. of the Third Joint Eurohaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 613-614, 2009.
  4. [4] J.-C. Lee, P.-H. Dietz, D. Leigh, W.-S. Yerazunis, and S. Hudson, “Haptic Pen: A Tactile Feedback Stylus for Touch Screens,” Proc. of the 17th annual ACM symp. on User interface software and technology, pp. 291-294, 2004.
  5. [5] K.-U. Kyung, S.-W. Son, G.-H. Yang, and D.-S. Kwon, “How to Effectively Display Surface Properties Using an Integrated Tactile Display System,” Proc. of Int. Conf. on Robotics and Automation, pp. 1761-1766, 2005.
  6. [6] R. Scheibe, M. Moehring, B. Froehlich, “Tactile Feedback at the Finger Tips for Improved Direct Interaction in Immersive Environments,” Proc. of Symp. on 3D User Interfaces, pp. 123-130, 2007.
  7. [7] A. Riener and A. Ferscha, “Reconfiguration of Vibro-tactile Feedback Based on Drivers’ Sitting Attitude,” Proc. of second Int. Conf. on Advances in Computer-Human Interactions, pp. 234-242, 2009.
  8. [8] E. Kruijff, D. Schmalstieg, and S. Beckhaus, “Using neuromuscular electrical stimulation for pseudo-haptic feedback,” Proc. of the ACM symp. on Virtual reality software and technology, pp. 316-319, 2006.
  9. [9] Y. Jansen, “Mudpad: Fluid Haptics for Multitouch Surfaces,” Proc. of the 28th of the int. conf. extended abstracts on Human factors in computing systems, pp. 4351-4356, 2010.
  10. [10] I. Poupyrev, S. Maruyama, and J. Rekimoto, “Ambient Touch: Designing Tactile Interfaces for Handheld Devices,” Proc. of the 15th Annual ACM Symp. on User Interface Software and Technology, pp. 51-60, 2002.
  11. [11] D. Tan, S. Amershi, B. Begole, W. A. Kellogg, M. Tungare, V. Levesque, L. Oram, K. MacLean, A. Cockburn, N. D. Marchuk, D. Johnson, J. E. Colgate, and M. A. Peshkin, “Enhancing physicality in touch interaction with programmable friction,” Proc. of the 2011 annual conf. on Human factors in computing systems, pp. 2481-2490, 2011.
  12. [12] Y. Visell, “Tactile sensory substitution: Models for enaction in HCI,” Interacting with Computers, Vol.21, Issues1-2, pp. 38-53, 2009.
  13. [13] R. Mertens, “Facharbeiterorientierte Möglichkeiten zur Prozessführung und – beobachtung an NC-Werkzeugmaschinen,” Dissertation RWTH Aachen University, 1994.
  14. [14] R. Daude, “Mobiles Maschinen- und Prozessinteraktionssystem. Eine innovative Benutzungsschnittstelle für NCWerkzeugmaschinen,” Dissertation RWTH Aachen University, 2001.
  15. [15] M. Weck, C. Brecher, J. Wisniowski, and J. Wolf, “Prozessgekoppelter Joystick zur Maschinenführung,” Werkstatttechnik online, 5, pp. 314-319, 2005.
  16. [16] H. Huang, W.-C. Tsai, and H.-H. Lai, “Factors Influencing the Usability of Icons in the LCD Touch Screens,” Lecture Notes in Computer Science, pp. 878-887, 2007.
  17. [17] International Electrotechnical Commission, International Standard IEC60529, 2001.
  18. [18] X. Sun, T. Plocher, andW. Qu, “An Empirical Study on the Smallest Comfortable Button/Icon Size on Touch Screen,” Lecture Notes in Computer Science, pp. 615-621, 2007.
  19. [19] C. Brecher, D. Kolster, and W. Herfs, “Innovative Benutzerschnittstellen für die Bedienpanels von Werkzeugmaschinen,” Zeitschrift für wirtschaftlichen Fabrikbetrieb, 7-8, pp. 553-556, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 08, 2019