IJAT Vol.6 No.2 pp. 147-153
doi: 10.20965/ijat.2012.p0147


Estimation of Dynamic Mechanical Error for Evaluation of Machine Tool Structures

Daisuke Kono*, Sascha Weikert**, Atsushi Matsubara*,
and Kazuo Yamazaki***

*Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

**ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland

***University of California, One Shields Avenue, Davis CA95616, USA

August 31, 2011
November 14, 2011
March 5, 2012
machine tool structures, estimation method, dynamic mechanical error, finite element analysis, rigid multi-body simulation
Dynamic motion errors of machine tools consist of errors in the mechanical system and the servo system. In this study, a simple method to estimate the dynamic mechanical error is proposed to evaluate machine tool structures. The dynamic mechanical error in the low frequency range is estimated from the static deformation due to the driving force, the counter force, and the inertial force. The error in a high-precision machine tool is estimated for comparison with measurements. Two calculation tools, finite element analysis and rigid multi-body simulation, are used for the estimation. Measured dynamic mechanical errors can be correctly estimated by the proposed method using finite element analysis. The tilt of driven bodies is the major reason for dynamic mechanical errors. When the reduction factor representing the structural deformation is properly determined, the rigid multi-body simulation is also an effective tool. Use of the proposed method for modification planning is demonstrated. Stiffness enhancement of the saddle was an effective modification candidate to reduce the dynamic mechanical error. If the error should be reduced to sub-micrometer level, the location of components should be modified because the Abbe offset and the offset of the driving force from the inertial force must be shortened.
Cite this article as:
D. Kono, S. Weikert, A. Matsubara, and K. Yamazaki, “Estimation of Dynamic Mechanical Error for Evaluation of Machine Tool Structures,” Int. J. Automation Technol., Vol.6 No.2, pp. 147-153, 2012.
Data files:
  1. [1] Y. Altintas, C. Brecher, M. Weck, and S. Witt, “Virtual Machine Tool,” Annals of the CIRP, Vol.54, No.2, pp. 115-138, 2005.
  2. [2] G. Bianchi, F. Paolucci, P. Van den Braembusshe, H. Van Brussel, and F. Jovane, “Towards Virtual Engineering in Machine Tool Design,” Annals of the CIRP, Vol.45, No.1, pp. 381-384, 1996.
  3. [3] M. Zatarain, E. Lejardi, F. Egana, and R. Bueno, “Modular Synthesis of Machine Tools,” Annals of the CIRP, Vol.47, No.1, pp. 333-336, 1998.
  4. [4] M. Weck and B. Mueller-Held, “Virtuelle Produkt-und Prozessentwicklung,” WT Werkstattstechnik online 90 H.7/8, Springer-VDIVerlag, pp. 302-306, 2000.
  5. [5] F. Rehsteiner, S. Weikert, and Z. Rak, “Accuracy Optimization of Machine Tools under Acceleration Loads for the Demands of High-Speed-Machining,” Proc. of the ASPE 1998 Annual Meeting, St. Louis, Mis., Oct., pp. 602-605.
  6. [6] M. Zaeh and D. Siedl, “A New Method for Simulation ofMachining Performance by Integrating Finite Element and Multi-body Simulation for Machine Tools,” Annals of the CIRP, Vol.56, No.1, pp. 383-386, 2007.
  7. [7] G. Pritschow and N. Croon, “Wege zur virtuellen Werkzeugmaschine,” WTWerkstattstechnik online 92 H.5, Springer-VDI-Verlag, pp. 194-199, 2002.
  8. [8] J. G. Pritschow, G. Rogers, and S. Roeck, “Echtzeitfaehige Maschinenmodelle,” WT Werkstattstechnik online 92 H.5, Springer-VDIVerlag, pp. 187-193, 2002.
  9. [9] N. Takayama, H. Ota, K. Ueda, and Y. Takeuchi, “Development of Table-on-Table-Type Five-Axis Machining Center: New Structure and Basic Characteristics,” Int. J. of Automation Technology, Vol.5,No.2, pp. 247-254, 2011.
  10. [10] M. Nakaminami, T. Tokuma, T. Moriwaki, and K. Nakamoto, “Optimal Structure Design Methodology for Compound MultiaxisMachine Tools-I – Analysis of Requirements and Specifications –,” Int. J. of Automation Technology, Vol.1, No.2, pp. 78-86, 2007.
  11. [11] M. Nakaminami, T. Tokuma, K. Matsumoto, S. Sakashita, T. Moriwaki, and K. Nakamoto, “Optimal Structure Design Methodology for Compound MultiaxisMachine Tools-II – Investigation of Basic Structure – ,” Int. J. of Automation Technology, Vol.1, No.2, pp. 87-93, 2007.
  12. [12] Z. Yu, K. Nakamoto, T. Ishida, and Y. Takeuchi, “Interactive Design-Assistance System of Machine Tool Structure in Conceptual and Fundamental Design Stage,” Int. J. of Automation Technology, Vol.4, No.3, pp. 303-311, 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 28, 2024