Paper:
Development of Variable Stiffness Colonoscope Consisting of Pneumatic Drive Devices
Shuichi Wakimoto, Issei Kumagai, and Koichi Suzumori
Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama, Japan
- [1] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless Capsule Endoscopy,” Nature, Vol.405, p. 417, 2000.
- [2] M. Delvaux and G. Gay, “Capsule endoscopy in 2005: Facts and perspective,” Best Practice & Research Clinical Gastroenterology, Vol.20, No.1, pp. 23-39, 2006.
- [3] G. M. Eisen, “Capsule Endoscopy Indications,” American Society for Gastrointestinal Endoscopy, Vol.14, No.1, pp. 1-4, 2006.
- [4] B. Vucelic, D. Rex, R. Pulanic, J. Pfefer, I. Hrstic, B. Levin, Z. Halpern, and N. Arber, “The Aer-O-Scope, Proof of Concept of a Pneumatic, Skill- Independent, Self-Propelling, Self-Navigating Colonoscope,” Gastroenterology, pp. 672-677, 2006.
- [5] M. Chiara, A. Arena, D. Accoto, A. Menciassi, and P. Dario, “A SMA-actuated miniature pressure regulator for a miniature robot for colonoscopy,” Sensors and Actuators A, Vol.105, pp. 119-131, 2003.
- [6] K. Ikuta, M. Tsukamoto, and S. Hirose, “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and its Application to Active Endoscope,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 427-430, 1988.
- [7] B. Kim, H. Lim, K. Kim, Y. Jeong, and J. Park, “A Locomotive Mechanism for a Robotic Colonoscope,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1373-1378, 2002.
- [8] S.Wakimoto and K. Suzumori, “Fabrication and Basic Experiments of Pneumatic Multi-chamber Rubber Tube Actuator for Assisting Colonoscope Insertion,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3260-3265, 2010.
- [9] K. Ikuta, “Cable with variable rigidity,” 10-295629, Japan Patent.
- [10] J. C. Brooker, B. P. Saunders, S. G. Shah, and C. B. Williams, “A new variable stiffness colonoscope makes colonoscopy easier: a randomized controlled trial,” Int. J. of Gastroenterology and Hepatology, Vol.46, pp. 801-805, 2000.
- [11] T. Ihara, T. Saito, K. Nakano, and M. Oka, “Various Stiffness Tube for Colonoscopes with Shape memory alloy actuators,” Proc. of conf. on The Japan Society of Mechanical Engineers Chugoku-Shikoku Branch, pp. 25-26, 2002. (in Japanese)
- [12] S.Wakimoto, I. Kumagai, and K. Suzumori, “Development of large Intestine Endoscope Changing Its Stiffness,” Proc. of IEEE Int. Conf. on Robotics and Biomimetics, pp. 2320-2325, 2009.
- [13] I. Kumagai, S. Wakimoto, and K. Suzumori, “Development of Large Intestine Endoscope Changing Its Stiffness – 2nd report: Improvement of Stiffness Change Device and Insertion Experiment –,” Proc. of IEEE Int. Conf. on Robotics and Biomimetics, pp. 241-246, 2010.
- [14] H. F. Schulte, “The Characteristics of theMcKibben Artificial Muscle,” The Application of External Power in Prosthetics and Orthetics, pp. 94-115, 1961.
- [15] K. Suzumori, S. Iikura, and H. Tanaka, “Applying a Flexible Microactuator to Robotic Mechanisms,” IEEE Control Systems, pp. 21-27, 1992.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.