IJAT Vol.5 No.3 pp. 313-319
doi: 10.20965/ijat.2011.p0313


Residual Stresses in High Speed Turning of Thin-Walled Cylindrical Workpieces

Ekkard Brinksmeier, Carsten Heinzel, Martin Garbrecht,
Jens Sölter, and Griet Reucher

Department of Engineering, Division of Manufacturing Technologies, University of Bremen, Badgasteiner Str. 1, Bremen 28359, Germany

February 1, 2011
April 9, 2011
May 5, 2011
cutting, turning, residual stress, distortion potential, hsc, high speed machining

Residual stress induced in cutting processes substantially impacts adversely on functional part performance and distortion, especially when thin-walled workpieces are machined. For this reason, basic research focuses on the correlation between a specific high-speed turning configuration and the occurrence of residual stress and the amount of resulting distortion. The presented experiments in high-speed turning of thin-walled AISI 52100 (100Cr6) steel workpieces show, that residual stress distribution in the surface layer moves toward compressive stress as cutting speed increases while feed and lower wall-thickness decrease. Indications were also, that increasing cutting speed leads to higher distortion. To evaluate residual stress potential in shape deviation, the so-called source force F’source was calculated by numerically integrating the residual stress depth profile.

Cite this article as:
Ekkard Brinksmeier, Carsten Heinzel, Martin Garbrecht,
Jens Sölter, and Griet Reucher, “Residual Stresses in High Speed Turning of Thin-Walled Cylindrical Workpieces,” Int. J. Automation Technol., Vol.5, No.3, pp. 313-319, 2011.
Data files:
  1. [1] E. Brinksmeier, J. T. Cammett, W. König, P. Leskovar, J. Peters, and H. K. Tönshoff, “Residual Stresses – Measurement and Causes in Machining Processes,” Annals of the CIRP, 31/2, pp. 491-510, 1982.
  2. [2] H. K. Tönshoff, “Eigenspannungen und plastische Verformungen im Werkstück durch spanende Bearbeitung,” Dr.-Ing. Diss. TU Hannover, 1966.
  3. [3] W. Bußmann, “Formfehleranalyse beim Planfräsen gehärteter Bauteile,” Dr.-Ing. Diss. Universität Hannover, 1991.
  4. [4] E. Brinksmeier and J. Sölter, “Prediction of shape deviations in machining,” Annals of the CIRP 58/1, pp. 507-510, 2009.
  5. [5] C. Heinzel, “Schleifprozesse verstehen: Zum Stand der Modellbildung und Simulation sowie unterstützender experimenteller Methoden,” Habilitation Universität Bremen, Shaker Verlag Aachen, 2009.
  6. [6] J. Sölter, “Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spanender Bearbeitung,” Dr.-Ing. Diss. Universität Bremen, Shaker Verlag Aachen, 2010.
  7. [7] F. Hoffmann, O. Keßler, T. Lübben, and P. Mayr, ““Distortion Engineering” – Verzugsbeherrschung in der Fertigung,” HTM, 57/3, pp. 213-217, 2002.
  8. [8] E. Brinksmeier, J. Sölter, and C. Grote, “Distortion Engineering – Identification of Causes for Dimensional and Form Deviations of Bearing Rings,” Annals of the CIRP, 56/1, pp. 109-112, 2007.
  9. [9] O. Keßler, C. Prinz, T. Sackmann, L. Nowag, H. Surm, F. Frerichs, T. Lübben, and H.-W. Zoch, “Experimental Study of Distortion Phenomena in Manufacturing Lines,” Proc. 1st Int. Conf. on Distortion Engineering, Bremen, Germany, pp. 11-21, 2005.
  10. [10] H. Schulz, “Hochgeschwindigkeitsbearbeitung – High-Speed Machining,” Carl Hanser Verlag München Wien, 1996.
  11. [11] P. Pouteau, J. Sölter, T. Lübben, A. Walter, F. Hoffmann, E. Brinksmeier, and P. Mayr, “Einfluss charakteristischer Werkstoffeigenschaften auf die Zerspanbarkeit bei hohen Schnittgeschwindigkeiten,” HTM 59, 6, pp. 388-395, 2004.
  12. [12] M. Greif, “Hochgeschwindigkeitsfräsen von Kupferlegierungen: Technologische Einflussgrößen und Randzoneneigenschaften,” Dr.-Ing. Dissertation Technische Hochschule Darmstadt, Carl Hanser Verlag, München, Wien, 1991.
  13. [13] F. Biesinger, M. Thiel, V. Schulze, O. Vöhringer, M. Krempe, and U. Wendt, “Characterization of Surface and Subsurface Regions of HSC-milled Steel,” in Scientific Fundamentals of HSC, H. Schulz (Ed.), Carl Hanser Verlag, Munich, pp. 137-149, 2001.
  14. [14] J. M. Plöger, “Randzonenbeeinflussung durch Hochgeschwindigkeitsdrehen,” Dr.-Ing. Dissertation Universität Hannover, Fortschritt-Berichte VDI Reihe 2 Nr. 611, VDI Verlag GmbH, Düsseldorf, 2002.
  15. [15] H. K. Tönshoff, T. Friemuth, R. B. Amor, J. Plöger, Characterizing the HSC-Range, “Material Behaviour and Residual Stress,” in: Scientific Fundamentals of HSC, H. Schulz (Ed.), Carl Hanser Verlag, Munich, pp. 103-112, 2001.
  16. [16] T. Ueda, A. Hosokawa, K. Oda, and K. Yamada, “Temperature on Flank Face of Cutting Tool in High Speed Milling,” Annals of the CIRP, 50/1, pp. 37-40, 2001.
  17. [17] P. Chevrier, A. Tidu, B. Bolle, P. Cezard, and J. P. Tinnes, “Investigation of surface integrity in high speed end milling of a low alloyed steel,” Int. J. of Machine Tools & Manufacture, 43, pp. 1135-1142, 2003.
  18. [18] M. A. Davies, A. L. Cooke, and E. R. Larsen, “High Bandwidth Thermal Microscopy of Machining AISI 1045 Steel,” Annals of the CIRP, 54/1, pp. 63-66, 2005.
  19. [19] E. Brinksmeier, P. Mayr, F. Hoffmann, T. Lübben, A. Walter, P. Diersen, P. Pouteau, and J. Sölter, “Werkstoffeinfluss auf die Spanbildung bei der Hochgeschwindigkeitszerspanung metallischer Werkstoffe,” in Hochgeschwindigkeitszerspanung, H. K. Tönshoff, F. Hollmann (Eds.), Wiley-VCH Verlag & Co. KGaA, Weinheim, pp. 267-290, 2005.
  20. [20] D. A. Axinte and R. C. Dewes, “Tool Wear and Workpiece Surface Integrity when High Speed Ball Nose End Milling Hardened AISI H13,” in Metal Cutting and High Speed Machining, D. Dudzinski, A. Molinari, H. Schulz (Eds.), Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 171-179, 2002.
  21. [21] J. Sölter and E. Brinksmeier, “Parameter Study of High Speed Turning of Hardened Steel,” Production Engineering Research and Development 12, 1, 2005.
  22. [22] A. L. Mantle and D. K. Aspinall, “Surface Integrity of a high speed milled gamma titanium aluminide,” J. ofMaterials Processing Technology, 118, pp. 143-150, 2001.
  23. [23] J. C. Outeiro, D. Umbrello, and R. M’Saoubi, “Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel,” Int. J. of Machine Tools and Manufacture, 46, pp. 1786-1794, 2006.
  24. [24] D. C. Montgomery, “Design and analysis of experiments, 6th edition,” John Wiley & Sons, Inc., 2005.
  25. [25] I. Szabó, “Höhere Technische Mechanik,” 6th edition, Springer-Verlag, Berlin, Heidelberg, New York, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021