Paper:
Skill-Assist Safety and Intelligence Technology
Suwoong Lee* and Yoji Yamada**
*Department of Bio-System Engineering, Graduate School of Science and Engineering, Yamagata University, 419 Building No.8, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
**Mechano-Informatics and Systems, Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 303 Building No.2 North, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- [1] Y. Yamada, H. Konosu, T. Morizono, and Y. Umetani, “Proposal of Skill-Assist: A System of Assisting Human Workers by Reflecting Their Skills in Positioning Tasks,” Proceedings of IEEE International Conference of System, Man, and Cybernetics, Tokyo, Japan, pp. IV-11, 1999.
- [2] H. Konosu, Y. Yamada, T. Morizono, and Y. Umetani, “Skill-Assist: Helping Human Workers with Automobile Modular Component Assembly,” Proceedings of SAE 2002 World Congress, Detroit, pp. 1-6, March 4-7, 2002.
- [3] BSR/T15.1, “Draft Standard for Trial Use for Intelligent Assist Devices - Personnel Safety Requirements,” Robotic Industries Association, March 15, 2002.
- [4] U. Laible, T. Burger, and G. Pritschow, “A fail-safe dual channel robot control for surgery applications,” Safety Science, Vol.42, No.8, pp. 423-436, 2004.
- [5] D. L. Hamilton, J. K. Bennett, and I. D. Walker, “Parallel Fault-Tolerant Robot Control,” Proceedings of the SPIE Conference on Cooperative Intelligent Robotics in Space III, pp. 251-261, Boston 1992.
- [6] J. E. Colgate, M. Peshkin, and S. H. Klostermeyer, “Intelligent Assist Devices in Industrial Applications: A Review,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, pp. 2516-2521, October, 2003.
- [7] E. Faulring and J. Colgate, “Run-Time Three-Dimensional Blend-Path Generation for Cobot Constraint Surfaces,” Proceedings of 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, pp. 1-8, November 17-22, 2002.
- [8] R. Shraft, C. Meyer, C. Parlitz, and E. Helms, “PowerMate - A Safe and Intuitive Robot Assistant for Handing and Assembly Tasks,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, pp. 4085-4090, April, 2005.
- [9] Y. Yamada, T. Morizono, Y. Umetani, and H. Konosu, “Warning : To Err Is Human Working Toward a Dependable Skill-Assist with a Method for Preventing Accidents Caused by Human Error,” IEEE Robotics and Automation Magazine, Vol.11, No.2, pp. 34-45, 2004.
- [10] “IEC 61025 Technical Committee, IEC 61025, Fault tree analysis (FTA),” IEC, 2006.
- [11] “IEC 60812 Technical Committee, IEC 60812, Analysis Techniques for System Reliability - Procedure for Failure Mode and Effects Analysis (FMEA),” IEC, 2006.
- [12] M. Sakai, T. Shirai, and M. Mukaidono, “A Construction Method of Fail-Safe Interlocking Module Based on Separation Between Safety-Related Parts and Non-Safety-Related Parts,” Proceedings of 4th International Conference on Engineering Design and Automation, Orlando, USA, p. 966, 2000.
- [13] M. Kato et al., “LSI Implementation and Safety Verification of Window Comparator Used in Fail-Safe Multiple Valued Logic Operations,” IEICE Transactions on Electron, Vol.E76-C, No.3, 1993.
- [14] Y. Wu and T. S. Huang, “Vision-Based Gesture Recognition: A Review Lecture Notes in Computer Science,” Springer, German, pp. 103-115, 1999.
- [15] A. Wilson and A. Bobick, “Parametric Hidden Markov Models for Gesture Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.9, pp. 884-900, 1999.
- [16] M. Hasanuzzaman, V. Ampornaramveth, T. Zhang, M. A. Bhuiyan, Y. Shirai, and H. Ueno, “Real Time Vision Based Gesture Recognition for Human-Robot Interaction,” Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, pp. 379-384, Shenyang, China, 2004.
- [17] T. Kirishima, K. Sato, and K. Chihara, “Real-Time Gesture Recognition by Learningand Selective Control of Visual Interest Points,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No.3, pp. 351-364, 2005.
- [18] ISO Technical Committee 199, ISO13855, “Safety of Machinery - Positioning of Protective Equipment with Respect to the Approach Speeds of Parts of the Human Body,” ISO, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.