single-dr.php

JDR Vol.11 No.6 pp. 1091-1102
(2016)
doi: 10.20965/jdr.2016.p1091

Paper:

Evaluation of Water Cycle Components with Standardized Indices Under Climate Change in the Pampanga, Solo and Chao Phraya Basins

Maksym Gusyev*1,*2,†, Akira Hasegawa*1,*2, Jun Magome*3, Patricia Sanchez*1, Ai Sugiura*1,*4, Hitoshi Umino*1, Hisaya Sawano*1, and Yoshio Tokunaga*1

*1International Centre for Water Hazard and Risk Management (ICHARM), Public Works Research Institute (PWRI),
1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan

Corresponding author,

*2National Graduate Institute for Policy Studies (GRIPS), Tokyo, Japan

*3International Research Centre for River Basin Environment (ICRE), University of Yamanashi, Kofu, Japan

*4UNESCO Office Jakarta, Jakarta, Indonesia

Received:
June 28, 2016
Accepted:
November 16, 2016
Published:
December 1, 2016
Keywords:
drought, standardized indices, BTOP model, climate change
Abstract
Drought is a slow-developing disaster of water shortages in water cycle components adversely affecting anthropogenic water use. This study introduces a drought assessment framework of standardized indices in Pampanga (Philippines), Solo (Indonesia), and Chao Phraya (Thailand) basins. We used three existing and developed two new standardized indices to characterize meteorological, agricultural, hydrological and socio-economic droughts. We constructed a 15-arcsec (about 0.45-km) grid block-wise TOP (BTOP) model with multipurpose dam operation at individual river basin using global datasets and calibrated BTOP models with daily river discharge and dam inflow data. The simulated irrigated area is also compared with historical drought damages at each river basin. The calibrated BTOP models were run with bias-corrected MRI-AGCM3.2S precipitation to evaluate droughts under climate change. The calculated standardized indices show similar drought timing of the 1982-1983, 1987-1988, 1991-1992, 1997-1998 and 2002-2003 droughts across three river basins. In addition, the timing of these droughts coincides with historical El Niño-Southern Oscillation (ENSO) cycle events. The projected future climates demonstrate a variability of dam inflows and drought severities between four cases of the worst (RCP8.5) climate change scenario. We conclude that standardized indices are useful tools to characterize droughts at water cycle components.
Cite this article as:
M. Gusyev, A. Hasegawa, J. Magome, P. Sanchez, A. Sugiura, H. Umino, H. Sawano, and Y. Tokunaga, “Evaluation of Water Cycle Components with Standardized Indices Under Climate Change in the Pampanga, Solo and Chao Phraya Basins,” J. Disaster Res., Vol.11 No.6, pp. 1091-1102, 2016.
Data files:
References
  1. [1] EM-DAT, “The OFDA/CRED International Disaster Database,” Université Catholique de Louvain, Brussels, Belgium, www.emdat.be, Assessed in September 2016, 2013.
  2. [2] IPCC, “Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White, editors, Climate Change 2014: Impacts, Adaptation, and Vulnerability, 688pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
  3. [3] V. Yevjevich, “An objective approach to definitions and investigations of continental hydrologic droughts,” Hydrology Papers 23, Colorado State University, Fort Collins, Colorado, 1967.
  4. [4] V. U. Smakhtin and E. L. Schipper, “Droughts: The impact of semantics and perceptions,” Water Policy, Vol.10, pp. 141-143, 2008.
  5. [5] V. U. Smakhtin, “Low flow hydrology: a review.” J. of Hydrology, Vol.240, pp. 147-186, 2001.
  6. [6] L. M. Tallaksen and H. A. J. van Lanen, “Hydrological Drought – Processes and Estimation Methods for Streamflow and Groundwater,” Developments in Water Sciences, Vol.48, p. 579, 2004.
  7. [7] A. K. Mishra and V. P. Singh, “A review of drought concepts,” J. of Hydrology, Vol.391, pp. 202-216, 2010.
  8. [8] A. Dai, “Drought under global warming: A review,” WIREs Climatic Change, Vol.2, pp. 45-65, 2011.
  9. [9] J. Sheffield and E.F. Wood, “Drought: Past Problems and Future Scenarios,” Earthscan, UK, 192pp., 2011.
  10. [10] A. I. J. M. van Dijk, H. E. Beck, R. S. Crosbie, de Jeu RAM, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney, “The millennium drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy and society,” Water Resour. Res., Vol.49, pp. 1-18, 2013.
  11. [11] A. F. Van Loon, “Hydrological Drought Explained,” WIREs Water, Vol.2, pp. 359-392, 2015.
  12. [12] A. F. Van Loon, et al., “Drought in a human-modified world: reframing drought definitions, understanding and analysis approaches,” Hydrol. Earth Syst. Sci., Vol.20, pp. 1-34, doi:10.5194/hess-2016-5251, 2016.
  13. [13] A. F. Van Loon et al., “Drought in a human-modified world: reframing drought definitions, understanding and analysis approaches,” Hydrol. Earth Syst. Sci., Vol.20, pp. 1-34, doi:10.5194/hess-2016-5251, 2016.
  14. [14] S. Bachmair, K. Stahl, K. Collins, J. Hannaford, M. Acreman, M. Svoboda, C. Knutson, K.H. Smith, N. Wall, B. Fuchs, N. D. Crossman, and I. C. Overton, “Drought indicators revisited: the need for a wider consideration of environment and society,” WIREs Water, doi: 10.1002/wat2.1154, 2016.
  15. [15] A. S. Kiem, F. Johnson, S. Westra, A. van Dijk, J. P. Evans, A. O’Donnell, A. Rouillard, C. Barr, J. Tyler, M. Thyer, D. Jakob, F. Woldemeskel, B. Sivakumar, and R. Mehrotra, “Natural hazards in Australia: droughts,” Climatic Change, doi: 10.1007/s10584-016-1798-7, 2016.
  16. [16] H. A. J. van Lanen, “Drought propagation through the hydrological cycle,” Climate Variability and Change – Hydrological Impacts, Proc. of the Fifth FRIEND World Conference, IAHS Publ., Vol.308, 2006.
  17. [17] W. Wang, M. W. Ertsen, M. D. Svoboda, and M. Hafwwz, “Propagation of drought: From meteorological drought to agricultural and hydrological drought,” Advances in Meteorology, Editorial, http://dx.doi.org/10.1155/2016/6547209, 2016.
  18. [18] L. J. Barker, J. Hannaford, A. Chiverton, and C. Svensson, “From meteorological to hydrological drought using standardised indicators,” Hydrol. Earth Syst. Sci., Vol.20, pp. 2483-2505, 2016.
  19. [19] M. H. J. van Huijgevoort, P. Hazenberg, H. A. J. van Lanen, and R. Uijlenhoet, “A generic method for hydrological drought identification across different climate regions,” Hydrol. Earth Syst. Sci., Vol.16, pp. 2437-2451, 2012.
  20. [20] A. K. Mishra and V. P. Singh, “Drought modeling - A review.” J. of Hydrology, Vol.391, pp. 157-175, 2011.
  21. [21] T. B. McKee, N. J. Doesken, and J. Kleist, “The relationship of drought frequency and duration to timescales,” in Proc. presented at 8th Conf. on Applied Climatology, American Meteorological Society, Anaheim, Vol.17, No.22, pp. 179-184, 1993.
  22. [22] N. B. Guttman, “Comparing the Palmer Drought Index and the Standardized Precipitation Index,” J. of the American Water Resour. Association, Vol.34, No.1, pp. 113-121, 1998.
  23. [23] S. Shukla and A. W. Wood, “Use of standardized runoff index for characterizing hydrological drought,” Geophys. Res. Lett., Vol.35, L02405, 2008.
  24. [24] I. Nalbantis and G. Tsakiris, “Assessment of Hydrological Drought Revisited”, Water Resour. Management, Vol.23 , No.5, pp. 881-897, 2008.
  25. [25] S. M. Vicente-Serrano, S. Begueria, and J. I. Lopez-Moreno, “A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index,” J. Climate, Vol.23, pp. 1696-1718, 2010.
  26. [26] P. Sanchez, L. Wang, and T. Koike, “Modeling the hydrologic responses of the Pampanga River basin, Philippines: A quantitative approach for identifying drought,” Water Resour. Res., Vol.47, pp. 3514-3525, 2011.
  27. [27] World Meteorological Organization (WMO), “Standardized Precipitation Index User Guide (M. Svoboda, M. Hayes, and D. Wood),” WMO-No.1090, Geneva, 2012.
  28. [28] L. Telesca, M. Lovallo, I. Lopez-Moreno, and S. Vicente-Serrano, “Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain),” Physica A: Statistical Mechanics and its Applications, Vol.391, No.4, pp. 1662-1678, 2012.
  29. [29] Z. Hao and A. AghaKouchak, “Multivariate Standardized Drought Index: A multi-index parametric approach for drought analysis,” Adv. Water Resour., Vol.57, pp. 12-18, 2013.
  30. [30] J. P. Bloomfield and B. P. Marchant, “Analysis of groundwater drought building on the standardised precipitation index approach,” Hydrol. Earth Syst. Sci., Vol.17: pp. 4769-4787, 2013.
  31. [31] M. Staudinger, K. Stahl, and J. Seibert, “A drought index accounting for snow.” Water Resour. Res., Vol.50, pp. 7861-7872, 2014.
  32. [32] M. Gusyev, A. Hasegawa, J. Magome, D. Kuribayashi, and H. Sawano, “Drought assessment in the Pampanga River basin, the Philippines – Part 1: Characterizing a role of dams in historical droughts with standardized indices,” in T. Weber, M. J. McPhee, and R. S. Anderssen (Eds), MODSIM2015, 21st Int. Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Gold Coast, November 29 – December 4, pp. 1586-1592. ISBN: 978-0-9872143-5-5, 2015.
  33. [33] A. Hasegawa, M. Gusyev, T. Ushiyama, J. Magome, and Y. Iwami, “Drought assessment in the Pampanga River basin, the Philippines – Part 2: A comparative SPI approach for quantifying climate change hazards,” in T. Weber, M. J. McPhee, and R. S. Anderssen (Eds.), MODSIM2015, 21st International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Gold Coast, November 29–December 4, pp. 2388-2394, ISBN: 978-0-9872143-5-5, 2015.
  34. [34] World Meteorological Organization (WMO) and Global Water Partnership (GWP), “Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs),” WMO/GWP Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2, WMO-No.1173, Geneva, Switzerland, ISBN 978-92-63-11173-9, 52pp., 2016.
  35. [35] H.C.S Thom, “A note on gamma distribution,” Monthly Weather Review, Vol.86, No.4, pp. 117-122, 1958.
  36. [36] A. Hasegawa, M. Gusyev, and Y. Iwami, “Meteorological drought and flood assessment using the comparative SPI approach in Asia under climate change,” J. of Disas. Res., Vol.11, No.6, 2016 (this issue).
  37. [37] K. Takeuchi, P. Hapuarachchi, M. Zhou, H. Ishidaira, and J. Magome, “A BTOP model to extend TOPMODEL for distributed hydrological simulation of large basins,” Hydrol. Processes, Vol.22, pp. 3236-3251, 2008.
  38. [38] J. Magome, M. A. Gusyev, A. Hasegawa and K. Takeuchi, “River discharge simulation of a distributed hydrological model on global scale for the hazard quantification,” in T. Weber, M. J. McPhee, and R. S. Anderssen (Eds.), MODSIM2015, 21st Int. Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Gold Coast, November 29 – December 4, pp. 1593-1599, ISBN: 978-0-9872143-5-5, 2015.
  39. [39] M. A. Gusyev, Y. Kwak, Md.I. Khairul, Md.B. Arifuzzaman, J. Magome, H. Sawano, and K. Takeuchi, “Effectiveness of water infrastructure for river flood management: Part 1 - Flood Hazard Assessment using hydrological models in Bangladesh,” Proc. of IAHS, Vol.370, pp. 75-81, doi:10.5194/piahs-370-75-2015, 2015.
  40. [40] Y. Kwak, M.A. Gusyev, Md.A. Arifuzzaman, Md.I. Khairul, Y. Iwami, and K. Takeuchi, “Effectiveness of Water Infrastructure for River Flood Management: Part 2 - Flood Risk Assessment and Changes in Bangladesh,” Proc. of IAHS, Vol.370, pp. 83-87, doi:10.5194/piahs-370-83-2015, 2015.
  41. [41] M. A. Gusyev, A. Gädeke, J. Cullmann, J. Magome, A. Sugiura, H. Sawano, and K. Takeuchi, “Connecting global- and local-scale flood risk assessment: a case study of the Rhine River basin flood hazard,” J. of Flood Risk Management, doi: 10.1111/jfr3.12243, 2016 (in press).
  42. [42] T. Okazumi, B. Shrestha, M. Miyamoto, and M. Gusyev, “Uncertainty Estimation during the Process of Flood Risk Assessment in Developing Countries – Case study in the Pampanga River Basin –,” J. of Disas. Res., Vol.9, No.1, pp. 69-77, 2014.
  43. [43] T. Okazumi, S. Lee, Y. Kwak, M. Gusyev, D. Kuribayashi, N. Yasuda, and H. Sawano, “Global Water-related Disaster Risk Indicators Assessing Real Phenomena of Flood Disasters: Think Locally, Act Globally,” In: Understanding Risk in an Evolving World – Emerging Best Practices in Natural Disaster Risk Assessment,” The Global Facility for Disaster Reduction and Recovery (GFDRR), the World Bank, Washington DC, USA, pp. 107-111, 2014.
  44. [44] J. Nawai, M. Gusyev, A. Hasegawa, and K. Takeuchi, “Flood and drought assessment with flood control infrastructure: A case study of the Ba River basin, Fiji,” in T. Weber, M. J. McPhee, and R. S. Anderssen (Eds.), MODSIM2015, 21st Int. Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Gold Coast, November 29 – December 4, pp. 1607-1613, ISBN: 978-0-9872143-5-5, 2015.
  45. [45] K. Navarathinam, M. Gusyev, J. Magome, A. Hasegawa, and K. Takeuchi, “Agricultural flood and drought risk reduction by a proposed multi-purpose dam: A case study of the Malwathoya River Basin, Sri Lanka,” in T. Weber, M. J. McPhee, and R. S. Anderssen (Eds.), MODSIM2015, 21st Int. Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Gold Coast, November 29 – December 4, pp. 1600-1606, ISBN: 978-0-9872143-5-5, 2015.
  46. [46] M. Gusyev, J. Magome, A. Keim, and K. Takeuchi, “The User Manual: the BTOP model with supplementary tools,” Public Works Research Institute (PWRI) Technical Note #4, Tsukuba, Japan, 80pp., 2016 (in press).
  47. [47] M.C. Zhou, H. Ishidaira, H. P. Hapuarachchi, J. Magome, A. S. Kiem, and K. Takeuchi, “Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin,” J.of Hydrology, Vol.327, Nos.1-2, pp. 151-173, 2006.
  48. [48] Food and Agriculture Organization (FAO), Crop Evapotranspiration. FAO 56 Irrigation and Drainage Paper. FAO of the United Nations, Rome, Italy, p. 286, 1998.
  49. [49] Japan International Cooperation Agency (JICA), “The study on integrated water resources management for poverty alleviation and economic development in the Pampanga River basin,” Final Report for the National Water Resources Board, the Republic of the Philippines, Volume I, JICA, Japan, p. 137, 2011.
  50. [50] Nippon Koei Ltd., “Comprehensive development and management plan (CDMP) study for Bengawan Solo River basin under Lower Solo improvement project,” Volume II – Main Report, 2001.
  51. [51] Japan International Cooperation Agency (JICA), “Project for the comprehensive flood management plan for the Chao Phraya River basin,” Final Report, Volume I: Summary Report, Thailanad, JICA, Japan, p. 109, 2013.
  52. [52] Pantabangan Dam Office, “Pantabangan dam hydrological and agricultural data,” Dam and Reservoir Division, Upper Pampanga River Integrated Irrigation Systems, National Irrigation Administration, the Philippines, Personal Communication, 2014.
  53. [53] Wonogiri Dam Office, “Wonogiri dam hydrological and agricultural data,” Indonesia. Personal Communication, 2015.
  54. [54] Thailand Royal Irrigation Department, “Bhumibol and Sirikit dams hydrological and agricultural data,” Thailand, Personal Communication, 2016.
  55. [55] A. Yatagai, K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, “APHRODITE Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Networkof Rain Gauges,” Bull. Amer. Meteor. Soc., pp. 1401–1415, 2012.
  56. [56] K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Amer. Meteor. Soc., pp. 485-498, doi:10.1175/BAMS-D-11-00094.1, 2012.
  57. [57] A. Kitoh and H. Endo, “Changes in precipitation extremes projected by a 20-km mesh global atmospheric model,” Weather and Climate Extremes, Vol.11, pp. 41-52, 2015.
  58. [58] H. S. Kusunoki, “Is the global atmospheric model MRIAGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia?,” Climate Dynamics, doi:1-22, 10.1007/s00382-016-3335, 2016.
  59. [59] H. Inomata, K. Takeuchi, and K. Fukami, “Development of a statistical bias correction method for daily precipitation data of GCM20,” Annu. J. Hydraul. Engr., JSCE, Vol.55, pp. 247-252, 2011.
  60. [60] Luas Kekeringan 1996-2007 (for all Provinces of Indonesia), Dinas Pertanian, Luas Kekeringan 1989-1997 Dinas Pertanian Jawa Tengah, 2016.
  61. [61] ENSO: Recent Evolution, Current Status and Predictions, 20 June 2016, NOAA, website: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf [accessed October, 2016]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024