single-dr.php

JDR Vol.7 No.1 pp. 12-18
(2012)
doi: 10.20965/jdr.2012.p0012

Paper:

Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation

Irwan Meilano*1, Hasanuddin Z. Abidin*1,
Heri Andreas*1, Irwan Gumilar*1,
Dina Sarsito*1, Rahma Hanifa*1,*4, Rino*1,
Hery Harjono*2, Teruyuki Kato*3,
Fumiaki Kimata*4, and Yoichi Fukuda*5

*1Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung, Ganesa 10, Bandung 40132, Indonesia

*2Indonesian Institute of Sciences (LIPI), Indonesia

*3Earthquake Research Institute, The University of Tokyo

*4Research Center Seismology, Volcanology and Disaster Mitigation, Nagoya University

*5Graduate School of Science, Kyoto University

Received:
October 5, 2011
Accepted:
January 10, 2012
Published:
January 1, 2012
Keywords:
Lembang dault, GPS observation, slip rate, creeping and locking
Abstract
The Sunda arc forms the southern border of the Indonesia Archipelago, where the Indo-Australian plate is subducted beneath Eurasia. The age of subducting plate increases from Sumatra in the west to Flores in the east. The increase in age is consistent with an increase in plate dip along the arc and an increasing depth of seismic activity. The motion of Australia with respect to West Java is 68 mm/yr in a direction N11E orthogonal to the trench. A number of active faults characterizing this area include Cimandiri fault, Lembang fault and Baribis fault. This research uses campaign and continues GPS data to make a preliminary estimation of the slip rate of Lembang fault. Our GPS measurements suggest that Lembang fault has shallow creeping and deeper locking portion. The estimated slip rate is 6 mm/yr with fault locking at 3-15 km and shallow creeping with the same rate. While the results are preliminary and we need more data for reliable estimations, we point out that these data can contribute to earthquake risk assessment by constraining earthquake recurrence relationships.
Cite this article as:
I. Meilano, H. Abidin, H. Andreas, I. Gumilar, D. Sarsito, R. Hanifa, Rino, H. Harjono, T. Kato, F. Kimata, and Y. Fukuda, “Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation,” J. Disaster Res., Vol.7 No.1, pp. 12-18, 2012.
Data files:
References
  1. [1] A. Z. Hasanuddin, H. Andreas, T. Kato, T. Ito, I. Meilano, F. Kimata, D. H. Natawidjaya, and H. Harjono, “Crustal Deformation Studies In Java (Indonesia) Using GPS,” Journal of Earthquake and Tsunami, Vol.3, No.2, pp. 77-88, 2009.
  2. [2] Y. Bock, L. Prawirodirdjo, J. F. Genrich, C. W. Stevens, R. Mc-Caffrey, C. Subarya, S. S. O. Puntodewo, and E. Calais, “Crustal motion in Indonesia from global positioning system measurements,” Journal of Geophysical Research, Vol.108, No.B8, p. 2367, doi:10.1029/2001JB000324, 2003.
  3. [3] M. S. Bos and H. G. Scherneck, “Free ocean tide loading provider,” 2004,
    http://www.oso.chalmers.se/loading/
    [Accessed at 5 August 2011]
  4. [4] M. A. C. Dam, “The Late Quaternary evolution of the Bandung basin,West-Java, Indonesia Thesis,” Vrije Universiteit, Amsterdam, p. 252, 1994.
  5. [5] H. N. Rahma, M. Irwan, T. Sagiya, F. Kimata, and H. Z. Abidin, “Numerical Modelling of the 2006 Java Tsunami Earthquake,” Advance in Geoscience, Vol.13, Solid Earth, 2007.
  6. [6] U. Hugentobler, R. Dach, and P. Fridez (Eds.), “Bernese GPS Software, Version 5.0,” University of Bern, 2004.
  7. [7] B. J. Meade and B. H. Hager, “Block models of crustal motion in southern California constrained by GPS measurements,” J. Geophys. Res., Vol.110, B03403, doi:10.1029/2004JB003209, 2005.
  8. [8] Y. Okada, “Surface deformation due to shear and tensile faults in a half space,” Bull. Seismol. Soc., Vol.75, No.4, pp. 1135-1154, 1985.
  9. [9] M. Oskin, L. Peng, D. Blumentritt, S. Mukhopadhyay, and A. Iriondo, “Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the eastern California shear zone,” Journal of Geophysical Research, Vol.112, B03402, doi: 10.1029/2006JB004451, 2007.
  10. [10] B. C. Papazachos, E.M. Scordilis, D. G. Panagiotopoulos, C. B. Papazachos, and G. F. Karakaisis, “Global Relations Between Seismic Fault Parameters and Moment Magnitude of Earthquakes,” Bulletin of Geological Society of Greece, Vol.XXVI, pp. 1482-1489, 2004.
  11. [11] G. Peltzer, F. Crampé, S. Hensley, and P. Rosen, “Transient strain accumulation and fault interaction in the Eastern California Shear Zone,” Geology, Vol.29, pp. 975-978, 2001.
  12. [12] S. S. O. Puntodewo, et al., “GPS measurements of crustal deformation within the Pacific ? Australia plate boundary zone in Irian Jaya,” Tectonophysics, Vol.237, pp. 141-153, 1994.
  13. [13] R. Schmid and M. Rothacher, “Estimation of elevation-dependent satel- lite antenna phase center variations of GPS satellites,” Journal of Geodesy, Vol.77, pp. 440-446, doi: 10.1007/s00190-003-0339-0., 2003.
  14. [14] B. Setydji, I.Murata, J. Kahar, S. Suparka, and T. Tanaka, “Analysis of GPS measurement in West-Java,” Indonesia, Ann. Disas. Prev. Res. Inst. Kyoto Univ., Vol.40, No.B-1, pp. 27-33, 1997.
  15. [15] H. D. Tjia, “The Lembang Fault, West Java,” Geologie En Mijnbouw, Vol.47, No.2, pp. 126-130, 1968.
  16. [16] R.W. Van Bemmellen, “The Geology of Indonesia,” Vol.IA General Geology, The Hague, 1949.
  17. [17] A. Walpersdorf, C. Rangin, and C. Vigny, “GPS compared to longterm geologic motion of the north arm of Sulawesi,” Earth planet. Sci. Lett., Vol.159, pp. 47-55, 1988.
  18. [18] L. D. Wells and J. K. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, andsurface displacement,” Bull. seism. Soc. Am., Vol.84, pp. 974-1002, 1994.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024