single-rb.php

JRM Vol.31 No.5 pp. 647-656
doi: 10.20965/jrm.2019.p0647
(2019)

Paper:

Step Response Characteristics of Anisotropic Gel Actuator Hybridized with Nanosheet Liquid Crystal

Hitoshi Kino, Akihiro Kiyota, Takumi Inadomi, Tomonori Kato, Hiroyuki Fujioka, and Nobuyoshi Miyamoto

Fukuoka Institute of Technology
3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka-shi, Fukuoka 811-0295, Japan

Received:
February 27, 2019
Accepted:
July 9, 2019
Published:
October 20, 2019
Keywords:
anisotropic contraction, nanosheet liquid crystal, step response, soft actuator
Abstract

In this study, we focus on a soft anisotropic gel actuator hybridized with nanosheet liquid crystal. This gel actuator is highly hydrophilic and can be operated underwater. Gel actuators can contract when heated and expand back to their original size when cooled down. It is anisotropic in the contraction direction, aligned with the orientation of the nanosheet liquid crystal. However, details of this step response property against the actuator undergoing thermal change have not been clarified. In this paper, we introduce a method to measure the step response using a square test sheet with a side length of 2–10 mm and thickness of 0.1–1.0 mm. This measurement was used to measure the heating and cooling step response. The obtained result was approximated using a first-order lag system to determine a steady-state value and time constant. In addition, the characteristics of steady-state value and time constant were clarified from the viewpoint of shapes such as specific surface area and thickness.

Photos of the anisotropic gel actuator hybridized with nanosheet liquid crystal

Photos of the anisotropic gel actuator hybridized with nanosheet liquid crystal

Cite this article as:
H. Kino, A. Kiyota, T. Inadomi, T. Kato, H. Fujioka, and N. Miyamoto, “Step Response Characteristics of Anisotropic Gel Actuator Hybridized with Nanosheet Liquid Crystal,” J. Robot. Mechatron., Vol.31 No.5, pp. 647-656, 2019.
Data files:
References
  1. [1] C. Laschi and M. Cianchetti, “Soft Robotics: New Perspectives for Robot Bodyware and Control,” Frontiers in Bioengineering and Biotechnology, Vol.2, Aticle 3, 2014.
  2. [2] H. T. Lin, G. G. Leisk, and B. Trimmer, “GoQBot: a caterpillar-inspired soft-bodied rolling robot,” Bioinspiration & Biomimetics, Vol.6, No.2, 026007, 2011.
  3. [3] M. Sitti and R. S. Fearing, “Synthetic Gecko Foot-Hair Micro/Nano-Structures as Dry Adhesives,” J. Adhesion Science and Technology, Vol.17, Issue 8, pp. 1055-1073, 2003.
  4. [4] C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, “Soft Robot Arm Inspired by the Octopus,” Advanced Robotics, Vol.26, Issue 7, pp. 709-727, 2012.
  5. [5] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft Robotics for Chemists,” Angewandth Chemie, Vol.50, Issue 8, pp. 1890-1895, 2011.
  6. [6] Y. Osada, H. Ozaki, and H. Hori, “A Polymer Gel with Electrically Driven Motility,” Nature, Vol.355, pp. 242-244, 1992.
  7. [7] Y. Okumura and K. Ito, “The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-link,” Adv. Mater., Vol.13, pp. 485-487, 2001.
  8. [8] R. Urayama, S. Honda, and T. Takigawa, “Electrooptical Effects with Anisotropic Deformation in Nematic Gels,” Macromolecules, Vol.38, pp. 3574-3576, 2005.
  9. [9] S. Maeda, Y. Hara, H. Sakaki, R. Yoshida, and H. Hashimoto, “Self-Walking Gel,” Adv. Mater., Vol.19, pp. 3480-3484, 2007.
  10. [10] S. M. Douglas, I. Bachelet, and G. M. Church, “A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads,” Science, Vol.335, pp. 831-834, 2012.
  11. [11] K. Takashima, T. Noritsugu, J. Rossiter, S. Guo, and T. Mukai, “Curved Type Pneumatic Artificial Rubber Muscle Using Shape-Memory Polymer,” J. Robot. Mechatron., Vol.24, No.3, pp. 472-479, 2012.
  12. [12] M. Takeuchi, M. Nakajima, M. Kojima, and T. Fukuda, “Nanoliters Discharge/Suction by Thermoresponsive Polymer Actuated Probe and Applied for Single Cell Manipulation,” J. Robot. Mechatron., Vol.22, No.5, pp. 644-650, 2010.
  13. [13] L. Huey, S. Sarkisov, M. Curley, and G. Adamovsky, “Actuators Based on Photomechanical Polymer,” J. Robot. Mechatron., Vol.18, No.6, pp. 684-691, 2006.
  14. [14] M. Uddin, M. Watanabe, H. Shirai, and T. Hirai, “Creeping and Novel Huge Bending of Plasticized PVC,” J. Robot. Mechatron., Vol.14, No.2, pp. 118-123, 2002.
  15. [15] S. Tadokoro, S. Yamagami, T. Kimura, T. Takamori, and K. Oguro, “Development of a Multi-Degree-of-Freedom Micromotion Device Consisting of Soft Gel Actuators,” J. Robot. Mechatron., Vol.11, No.4, pp. 244-250, 1999.
  16. [16] A. Mourchid, E. Lecolier, H. Van Damme, and P. Levitz, “On viscoelastic, birefringent, and swelling properties of Laponite clay suspensions: revisited phase diagram,” Langmuir, Vol.14, No.17, pp. 4718-4723, 1998.
  17. [17] J.-C. P. Gabriel, C. Sanchez, and P. Davidson, “Observation of Nematic Liquid-Crystal Textures in Aqueous Gels of Smectite Clays,” J. Phys. Chem., Vol.100, Issue 26, pp. 11139-11143, 1996.
  18. [18] N. Miyamoto, H. Iijima, H. Ohkubo, and Y. Yamauchi, “Liquid crystal phases in the aqueous colloids of size-controlled fluorinated layered clay mineral nanosheets,” Chemical Communications, Vol.46, Issue 23, pp. 4166-4168, 2010.
  19. [19] N. Miyamoto, M. Shintate, S. Ikeda, Y. Hoshida, R. Motokawa, and M. Annaka, “Liquid crystalline inorganic nanosheets for facile synthesis of polymer hydrogels with anisotropies in structure, optical property, swelling/deswelling, and ion transport/fixation,” Chem. Commun., Vol.49, Issue 11, pp. 1082-1084, 2013.
  20. [20] T. Inadomi, S. Ikeda, Y. Okumura, H. Kikuchi, and N. Miyamoto, “Photo-Induced Anomalous Deformation of Poly(N-Isopropylacrylamide) Gel Hybridized with an Inorganic Nanosheet Liquid Crystal Aligned by Electric Field,” Macromolecular Rapid Communications, Vol.35, Issue 20, pp. 1741-1746, 2014.
  21. [21] H. Kino, N. Samrejfuangfoo, K. Tsuda, T. Kato, and H. Fujioka, “Fundamental Study of Soft Actuator Using Anisotropic Gel Hybridized with Nanosheet Liquid Crystal: Analysis of heat characteristics and length control,” J. Procedia Computer Science, Vol.105, pp. 62-67, 2017.
  22. [22] T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically Active Artificial Pupil Showing Amoeba-Like Pseudopodial Deformation,” Advanced Materials, Vol.21, Issue 28, pp. 2886-2888, 2009.
  23. [23] M. Ma, L. Guo, D. G. Anderson, and R. Langer, “Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients,” Science, Vol.339, Issue 6116, pp. 186-189, 2013.
  24. [24] P. J. Flory, “The Configuration of Real Polymer Chains,” J. Materials Chemistry, Vol.17, Issue 317, pp. 303-310, 1954.
  25. [25] P. J. Flory and J. Rehner, “Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling,” J. Materials Chemistry, Vol.11, Issue 1111, pp. 521-526, 1943.
  26. [26] T. Tanaka, L. O. Hocker, and G. B. Benedek, “Spectrum of light scattered from a viscoelastic gel,” J. Materials Chemistry, Vol.59, Issue 9, pp. 5151-5159, 1973.
  27. [27] P. D. Gennes, “On a relation between percolation theory and the elasticity of gels,” J. Physique Lett., Vol.37, Issue 1, pp. 1-2, 1976.
  28. [28] T. Tanaka, “Collapse of Gels and the Critical Endpoint,” Phys. Rev. Lett., Vol.40, Issues 12, pp. 820-823, 1978.
  29. [29] A. Katchalsky, “Rapid swelling and deswelling of reversible gels of polymeric acids by ionization,” Experimentia, Vol.5, Issue 8, pp. 319-320, 1949.
  30. [30] S. Hirotsu, Y. Hirokawa, and T. Tanaka, “Volume-phase transitions of ionized N-isopropylacrylamide gels,” J. Chemical Physics, Vol.87, No.2, pp. 1392-1395, 1987.
  31. [31] A. J. Grodzinsky and N. A. Shoenfeld, “Tensile forces induced in collagen by means of electromechanochemical transductive coupling,” Polymer, Vol.18, Issue 5, pp. 435-443, 1977.
  32. [32] A. Aviram, “Mechanophotochemistry,” Macromolecules, Vol.11, Issue 6, pp. 1275-1280, 1978.
  33. [33] M. Zrinyi and L. Barsi, “Deformation of ferrogels induced by nonuniform magnetic fields,” J. Chemical Physics, Vol.104, No.21, pp. 8750-8756, 1996.
  34. [34] M. Shibayama, M. Morimoto, and S. Nomura, “Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/ Water Isochore Gels,” Macromolecules, Vol.27, Issue 18, pp. 5060-5066, 1994.
  35. [35] K. Haraguchi and T. Takehisa, “Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/Deswelling Properties,” Advanced Materials, Vol.14, Issue 16, pp. 1120-1124, 2002.
  36. [36] K. Haraguchi, S. Taniguchi, and T. Takehisa, “Reversible Force Generation in a Temperature-Responsive Nanocomposite Hydrogel Consisting of Poly(N-isopropylacrylamide) and Clay,” Chemphyschem, Vol.6, Issue 2, pp. 238-241, 2005.
  37. [37] K. Haraguchi and T. Takehisa, “Novel Manufacturing Process of Nanocomposite Hydrogel For Bio-Applications,” Int. Mechanical Engineering Congress and Exposition, pp. 119-126, 2005.
  38. [38] A. Weber and J. M Murray, “Molecular control mechanisms in muscle contraction,” Physiological Reviews, Vol.53, Issue 3, pp. 612-673, 1973.
  39. [39] A. F. Huxley, “Muscular contraction,” J. Physiology, Vol.243, Issue 1, pp. 1-43, 1974.
  40. [40] M. Doi, “Gel Dynamics,” J. Phys. Soc. Jpn., Vol.78, No.5, 052001, 2009.
  41. [41] E. Sato-Matsuo and T. Tanaka, “Kinetics of discontinuous volume-phase transition of gels,” J. Chem. Phys., Vol.89, No.3, pp. 1695-1703, 1988.
  42. [42] C. Hashimoto and H. Ushikia, “Graphical analysis for gel morphology. III. Gel size and temperature effects on the volume phase transition of gels,” J. Chem. Phys., Vol.124, No.4, 044903, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024