single-rb.php

JRM Vol.37 No.6 pp. 1499-1507
doi: 10.20965/jrm.2025.p1499
(2025)

Paper:

Human-Inspired Flow-Crossing Navigation for Nonholonomic Mobile Robots in Dynamic Pedestrian Environments

Ryusei Shigemoto ORCID Icon, Shohei Saida, and Ryosuke Tasaki ORCID Icon

Department of Mechanical Engineering, Aoyama Gakuin University
5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan

Corresponding author

Received:
April 4, 2025
Accepted:
August 4, 2025
Published:
December 20, 2025
Keywords:
flow-crossing navigation, human-inspired planning, pedestrian-aware mobility, nonholonomic robots, dynamic environments
Abstract

This paper proposes a human-inspired navigation method that enables nonholonomic mobile robots to traverse dynamic pedestrian flows safely and efficiently. Conventional methods primarily focus on static environments or avoiding individual pedestrians; however, limited attempts have been made to validate robot crossing behavior experimentally within actual crowd scenarios. Therefore, this study implemented crossing navigation based on observed human behavior, specifically positioning robots behind pedestrians during crossing maneuvers. The algorithm developed herein identifies the optimal crossing points within dynamic pedestrian flows, considering robot nonholonomic constraints to ensure safety and efficiency. Additionally, potential field methods generate robot trajectories toward the identified crossing points, and pure pursuit control facilitates smooth trajectory tracking. Multiple simulations confirmed significant reductions in arrival time and path length compared with the conventional social-force-based method under uniform and nonuniform pedestrian flow conditions. Furthermore, pedestrian disturbances decreased, stabilizing the average walking velocities. In real-world experiments conducted in a 6 m × 6 m environment, robots successfully traversed pedestrian gaps without disrupting pedestrian flow. Moreover, pedestrians voluntarily yielded paths to the robot, indicating the importance of incorporating human social behaviors into robotic navigation planning. Thus, multiple simulation and experimental results demonstrated that the proposed method effectively balances safety and efficiency in robotic path planning through crowds.

Robot crossing in dynamic pedestrian flow

Robot crossing in dynamic pedestrian flow

Cite this article as:
R. Shigemoto, S. Saida, and R. Tasaki, “Human-Inspired Flow-Crossing Navigation for Nonholonomic Mobile Robots in Dynamic Pedestrian Environments,” J. Robot. Mechatron., Vol.37 No.6, pp. 1499-1507, 2025.
Data files:
References
  1. [1] D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay, “Self-organizing pedestrian movement,” Environment and planning B: Planning and Design, Vol.28, No.3, pp. 361-383, 2001. https://doi.org/10.1068/b2697
  2. [2] D. Helbing, L. Buzna, A. Johansson, and T. Werner, “Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions,” Transportation Science, Vol.39, No.1, pp. 1-24, 2005. https://doi.org/10.1287/trsc.1040.0108
  3. [3] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, Vol.1, pp. 269-271, 1959.
  4. [4] J. Pearl, “Heuristics intelligent search strategies for computer problem solving,” Addison-Wesley, 1984.
  5. [5] O. Kathib, “Real-time obstacle avoidance for manipulators and mobile robots,” Proc. 1985 IEEE Int. Conf. on Robotics and Automation, Vol.2, pp. 500-505, 1985. https://doi.org/10.1109/ROBOT.1985.1087247
  6. [6] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, Vol.4, No.1, pp. 23-33, 1997. https://doi.org/10.1109/100.580977
  7. [7] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Computer Science Dept. Oct., Vol.98, No.11, 1998.
  8. [8] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Probabilistic algorithms and the interactive museum tour-guide robot Minerva,” The Int. J. of Robotics Research, Vol.19, No.11, pp. 972-999, 2000. https://doi.org/10.1177/02783640022067922
  9. [9] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun, “Experiences with an interactive museum tour-guide robot,” Artificial Intelligence, Vol.114, Nos.1-2, pp. 3-55, 1999. https://doi.org/10.1016/S0004-3702(99)00070-3
  10. [10] Y. Hosoda, K. Yamamoto, R. Ichinose, S. Egawa, J. Tamamoto, K. Tsubouchi, and S. Yuta, “Collision-avoidance algorithm for human-symbiotic robot,” ICCAS 2010, pp. 557-561, 2010. https://doi.org/10.1109/ICCAS.2010.5669933
  11. [11] N. E. Du Toit and J. W. Burdick, “Robot motion planning in dynamic, uncertain environments,” IEEE Trans. on Robotics, Vol.28, No.1, pp. 101-115, 2012. https://doi.org/10.1109/TRO.2011.2166435
  12. [12] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting crowds,” 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 797-803, 2010. https://doi.org/10.1109/IROS.2010.5654369
  13. [13] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in dense human crowds: Statistical models and experimental studies of human–robot cooperation,” The Int. J. of Robotics Research, Vol.34, No.3, pp. 335-356, 2015. https://doi.org/10.1177/0278364914557874
  14. [14] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in dense human crowds: The case for cooperation,” 2013 IEEE Int. Conf. on Robotics and Automation, pp. 2153-2160, 2013. https://doi.org/10.1109/ICRA.2013.6630866
  15. [15] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with deep reinforcement learning,” 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1343-1350, 2017. https://doi.org/10.1109/IROS.2017.8202312
  16. [16] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot social-aware navigation framework to accompany people walking side-by-side,” Autonomous Robots, Vol.41, No.4, pp. 775-793, 2017. https://doi.org/10.1007/s10514-016-9584-y
  17. [17] A. Bera, T. Randhavane, R. Prinja, and D. Manocha, “Sociosense: Robot navigation amongst pedestrians with social and psychological constraints,” 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 7018-7025, 2017. https://doi.org/10.1109/IROS.2017.8206628
  18. [18] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” 2019 Int. Conf. on Robotics and Automation (ICRA), pp. 6015-6022, 2019. https://doi.org/10.1109/ICRA.2019.8794134
  19. [19] S. Liu, P. Chang, Z. Huang, N. Chakraborty, K. Hong, W. Liang, D. L. McPherson, J. Geng, and K. Driggs-Campbell, “Intention aware robot crowd navigation with attention-based interaction graph,” 2023 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 12015-12021, 2023. https://doi.org/10.1109/ICRA48891.2023.10160660
  20. [20] K. Aghabayk, O. Ejtemai, M. Sarvi, and A. Sobhani, “Understanding pedestrian crowd merging behavior,” Transportation Research Procedia, Vol.2, pp. 768-773, 2014. https://doi.org/10.1016/j.trpro.2014.09.086
  21. [21] K. Rio and W. H. Warren, “A data-driven model of pedestrian following and emergent crowd behavior,” U. Weidmann, U. Kirsch, and M. Schreckenberg (Eds.), “Pedestrian and Evacuation Dynamics 2012,” pp. 561-574, 2013. https://doi.org/10.1007/978-3-319-02447-9_47
  22. [22] P. Mullick, S. Fontaine, C. Appert-Rolland, A. Olivier, W. H. Warren, and J. Pettré, “Analysis of emergent patterns in crossing flows of pedestrians reveals an invariant of ‘stripe’ formation in human data,” PLoS Computational Biology, Vol.18, No.6, Article No.e1010210, 2022. https://doi.org/10.1371/journal.pcbi.1010210
  23. [23] R. Bhaskara, H. Viswanath, and A. Bera, “Trajectory prediction for robot navigation using flow-guided Markov neural operator,” 2024 IEEE Int. Conf. on Robotics and Automation, pp. 15209-15216, 2024. https://doi.org/10.1109/ICRA57147.2024.10611154
  24. [24] D. Dugas, K. Cai, O. Andersson, N. Lawrance, R. Siegwart, and J. J. Chung, “FlowBot: Flow-based Modeling for Robot Navigation,” 2022 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 8799-8805, 2022. https://doi.org/10.1109/IROS47612.2022.9981407
  25. [25] X. Yao, J. Zhang, and J. Oh, “Following social groups: Socially compliant autonomous navigation in dense crowds,” arXiv:1911.12063, 2019. https://doi.org/10.48550/arXiv.1911.12063
  26. [26] Y. Du, N. J. Hetherington, C. L. Oon, W. P. Chan, C. P. Quintero, E. Croft, and H. M. Vander Loos, “Group surfing: A pedestrian-based approach to sidewalk robot navigation,” 2019 Int. Conf. on Robotics and Automation (ICRA), pp. 6518-6524, 2019. https://doi.org/10.1109/ICRA.2019.8793608
  27. [27] R. Shigemoto and R. Tasaki, “Mobile robot navigation based on pedestrian flow model considering human unsteady dynamic behavior,” Proc. of the 20th Int. Conf. on Informatics in Control, Automation and Robotics (ICINCO 2023), pp. 281-284, 2023. https://doi.org/10.5220/0012211900003543
  28. [28] R. Shigemoto and R. Tasaki, “Motion planning of a human-aware mobile robot merging into dynamic pedestrian flow,” 2024 9th Int. Conf. on Control and Robotics Engineering (ICCRE), pp. 173-176, 2024. https://doi.org/10.1109/ICCRE61448.2024.10589787
  29. [29] J. J. Fruin, “Pedestrian plan and design,” Metropolitan Association of Urban Designers and Environmental Planners, 1971.
  30. [30] D. Fox, “Adapting the sample size in particle filters through KLD-sampling,” Int. J. of Robotics Research, Vol.22, No.12, pp. 985-1004, 2003. https://doi.org/10.1177/0278364903022012001
  31. [31] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Trans. on Robotics, Vol.23, No.1, pp. 34-46, 2007. https://doi.org/10.1109/TRO.2006.889486
  32. [32] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” IEEE Trans. on Intelligent Vehicles, Vol.1, No.1, pp. 33-55, 2016. https://doi.org/10.1109/TIV.2016.2578706
  33. [33] M. Moussäid, D. Helbing, and G. Theraulaz, “How simple rules determine pedestrian behavior and crowd disasters,” Proc. of the National Academy of Sciences, Vol.108, No.17, pp. 6884-6888, 2011. https://doi.org/10.1073/pnas.1016507108

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 19, 2025