Paper:
Application of Segmented Shape-Memory Polymer and Alloy Composite Sheet to Pneumatic Artificial Rubber Muscles
Kazuto Takashima*,
, Takuro Akasaki*, Junya Nagaishi**, Hiroki Cho**, and Toshiro Noritsugu***
*Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
Corresponding author
**Faculty of Environmental Engineering, The University of Kitakyushu
1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
***Okayama University
3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
In aging societies, soft multi-degree-of-freedom actuators are required for power-assist devices and welfare robots. Therefore, we previously developed a pneumatic artificial rubber muscle that uses shape-memory polymer (SMP) sheets with embedded electrical heating wires, which utilize the large difference in the elastic modulus below and above the glass transition temperature, shape fixity, and shape recovery of SMPs. Moreover, we increased the bending motion range of the actuators by segmenting the SMP sheet with embedded nichrome wires. We also improved the fabrication repeatability and shape recovery of the SMP sheets by using a shape-memory alloy (SMA) electric heating wire. In this study, we combine our previous improvements and propose a segmented shape-memory composite (SMC) sheet that consists of segmented SMP sheets with embedded SMA wires. We compare the shape, thermal images, and mechanical properties of the previously developed SMP sheets and the proposed segmented SMC sheets. The mechanical properties of the sample sheets are evaluated using a shape fixity and recovery test, a bending test, and a tensile test on prototypes. We also evaluate the motion of artificial muscles to which SMP sheets with embedded nichrome or SMA wires were attached using an isometric test and bending angle measurements. The experimental results confirm that the segmentation of the sheets improved muscle performance. Moreover, the use of the SMA wire improved fabrication repeatability and shape recovery, confirming that we successfully combined our previous improvements for SMP sheets with embedded heating wires.
Pneumatic artificial rubber muscle
- [1] T. Higuchi, K. Suzumori, and S. Tadokoro (Eds.), “Next-generation actuators leading breakthroughs,” Springer, 2010.
- [2] K. Takashima, K. Sugitani, N. Morimoto, S. Sakaguchi, T. Noritsugu, and T. Mukai, “Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire,” Smart Mater. Struct., Vol.23, No.12, Article No.125005, 2014. https://doi.org/10.1088/0964-1726/23/12/125005
- [3] K. Takashima, D. Iwamoto, S. Oshiro, T. Noritsugu, and T. Mukai, “Characteristics of pneumatic artificial rubber muscle using two shape-memory polymer sheets,” J. Robot. Mechatron., Vol.33, No.3, pp. 653-664, 2021. https://doi.org/10.20965/jrm.2021.p0653
- [4] K. Takashima, Y. Okamura, D. Iwamoto, T. Noritsugu, and T. Mukai, “Development of pneumatic artificial rubber muscle using segmented shape-memory polymer sheets,” J. Robot. Mechatron., Vol.35, No.1, pp. 113-124, 2023. https://doi.org/10.20965/jrm.2023.p0113
- [5] K. Takashima, Y. Okamura, J. Nagaishi, H. Cho, T. Noritsugu, and T. Mukai, “Development and application of shape-memory polymer and alloy composite sheets,” J. Robot. Mechatron., Vol.36, No.3, pp. 769-778, 2024. https://doi.org/10.20965/jrm.2024.p0769
- [6] K. Takashima, T. Noritsugu, J. Rossiter, S. Guo, and T. Mukai, “Curved type pneumatic artificial rubber muscle using shape-memory polymer,” J. Robot. Mechatron., Vol.24, No.3, pp. 472-479, 2012. https://doi.org/10.20965/jrm.2012.p0472
- [7] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Adv. Mater., Vol.30, Article No.1707035, 2018. https://doi.org/10.1002/adma.201707035
- [8] S. Yahara, S. Wakimoto, T. Kanda, and K. Matsushita, “McKibben artificial muscle realizing variable contraction characteristics using helical shape-memory polymer fibers,” Sensors and Actuators: A Physical, Vol.295, pp. 637-642, 2019. https://doi.org/10.1016/j.sna.2019.06.012
- [9] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, Vol.521, No.7553, pp. 467-475, 2015. https://doi.org/10.1038/nature14543
- [10] A. Miriyev, K. Stack, and H. Lipson, “Soft material for soft actuators,” Nat. Commun., Vol.8, Article No.596, 2017. https://doi.org/10.1038/s41467-017-00685-3
- [11] K. Suzumori, “New robotics pioneered by fluid power,” J. Robot. Mechatron., Vol.32, No.5, pp. 854-862, 2020. https://doi.org/10.20965/jrm.2020.p0854
- [12] J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des., Vol.56, pp. 1078-1113, 2014. https://doi.org/10.1016/j.matdes.2013.11.084
- [13] J. Rossiter, K. Takashima, and T. Mukai, “Thermal response of novel shape memory polymer-shape memory alloy hybrids,” Proc. SPIE Vol.9058, Behavior and Mechanics of Multifunctional Materials and Composites 2014, Article No.905810, 2014. https://doi.org/10.1117/12.2045175
- [14] H. Meng, H. Mohamadian, M. Stubblefield, D. Jerro, S. Ibekwe, S.-S. Pang, and G. Li, “Various shape memory effects of stimuli-responsive shape memory polymers,” Smart Mater. Struct., Vol.22, No.9, Article No.093001, 2013. https://doi.org/10.1088/0964-1726/22/9/093001
- [15] Y. Haga, T. Mineta, T. Matsunaga, and N. Tsuruoka, “Micro-robotic medical tools employing SMA actuators for use in the human body,” J. Robot. Mechatron., Vol.34, No.6, pp. 1233-1244, 2022. https://doi.org/10.20965/jrm.2022.p1233
- [16] T. P. Chenal, J. C. Case, J. Paik, and R. K. Kramer, “Variable stiffness fabrics with embedded shape memory materials for wearable applications,” 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2827-2831, 2014. https://doi.org/10.1109/IROS.2014.6942950
- [17] H. Tobushi, S. Hayashi, Y. Sugimoto, and K. Date, “Two-way bending properties of shape memory composite with SMA and SMP,” Materials, Vol.2, pp. 1180-1192, 2009. https://doi.org/10.3390/ma2031180
- [18] P. Ghosh, A. Rao, and A. R. Srinivasa, “Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites,” Mater. Des., Vol.44, pp. 164-171, 2013. https://doi.org/10.1016/j.matdes.2012.05.063
- [19] H. Du, Y. Yao, Y. Liu, and W. Zhao, “Two-way shape memory effect of a shape memory composite strip,” Appl. Sci., Vol.13, Article No.4715, 2023. https://doi.org/10.3390/app13084715
- [20] H. Tobushi, K. Okumura, S. Hayashi, and N. Ito, “Thermomechanical constitutive model of shape memory polymer,” Mech. Mater., Vol.33, pp. 545-554, 2001. https://doi.org/10.1016/S0167-6636(01)00075-8
- [21] Y. An, H. Yoshida, Y. Jing, T. Liang, and H. Okuzaki, “Ionic shape memory polymer gels as multifunctional sensors,” Soft Matter, Vol.18, Article No.6791, 2022. https://doi.org/10.1039/D2SM00515H
- [22] A. Shimamoto and Y. Furuya, “Active control of crack-tip stress intensity by contraction of shape memory TiNi fibers embedded in epoxy matrix composite: Dependency of stress intensity factor on cracktip domain size,” Proc. of ICCM-11, Vol.6, pp. 493-499, 1997.
- [23] G. Murasawa, S. Yoneyama, K. Tohgo, and M. Takashi, “Distribution of deformation and internal stress in shape memory alloy composite,” Trans. of the Japan Society of Mechanical Engineers, Series A, Vol.71, No.705, pp. 780-788, 2005 (in Japanese). https://doi.org/10.1299/kikaia.71.780
- [24] The Japan Society of Mechanical Engineers (Eds.), “JSME Mechanical Engineers’ Handbook DVD-ROM,” Maruzen Publishing, 2014 (in Japanese).
- [25] Y. Jiang, S. Ji, J. Sun, J. Huang, Y. Li, G. Zou, T. Salim, C. Wang, W. Li, H. Jin, J. Xu, S. Wang, T. Lei, X. Yan, W. Y. X. Peh, S. Yen, Z. Liu, M. Yu, H. Zhao, Z. Lu, G. Li, H. Gao, Z. Liu, Z. Bao, and X. Chen, “A universal interface for plug-and-play assembly of stretchable devices,” Nature, Vol.614, pp. 456-462, 2023. https://doi.org/10.1038/s41586-022-05579-z
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.