Paper:
Driving Assistance for Collision Avoidance by Simultaneous Intervention in Steering and Throttle Operations
Renlong Wu
and Nobutaka Wada

Graduate School of Advanced Science and Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan
This paper presents a novel shared control algorithm based on quasi-linear parameter varying model predictive control (qLPV-MPC) for the purpose of preventing vehicle collisions during lane-changing maneuvers and maintaining the vehicle’s position within the lane at all times. The algorithm optimizes the control solution by transforming it into a quadratic programming problem, thus enhancing computational efficiency. By sharing control over both vehicle acceleration and steering wheel torque, the algorithm provides coupled lateral and longitudinal dynamic control, allowing simultaneous acceleration/deceleration adjustments and steering torque application for effective collision avoidance. Notably, the algorithm operates independently of a reference path, allowing the driver to retain primary control over vehicle movement, while the controller intervenes only in high-risk situations. Simulation scenarios, including rear-end, side-impact, and multi-vehicle collision cases, are employed to validate the algorithm’s effectiveness in various collision avoidance contexts.

Safe overtaking via shared control
- [1] I. Skog and P. Handel, “In-car positioning and navigation technologies—A survey,” IEEE Trans. Intell. Transp. Syst., Vol.10, No.1, pp. 4-21, 2009. https://doi.org/10.1109/TITS.2008.2011712
- [2] H. L. Bloecher, J. Dickmann, and M. Andres, “Automotive active safety & comfort functions using radar,” IEEE Int. Conf. on Ultra-Wideband (ICUWB), pp. 490-494, 2009. https://doi.org/10.1109/ICUWB.2009.5288790
- [3] B. Kouvaritakis and M. Cannon, “Model predictive control,” Springer, 2016. https://doi.org/10.1007/978-3-319-24853-0
- [4] P. Stano, U. Montanaro, D. Tavernini, M. Tufo, G. Fiengo, L. Novella, and A. Sorniotti, “Model predictive path tracking control for automated road vehicles: A review,” Annu. Rev. Control, Vol.55, pp. 194-236, 2023. https://doi.org/10.1016/j.arcontrol.2022.11.001
- [5] F. Mohseni, E. Frisk, and L. Nielsen, “Distributed cooperative MPC for autonomous driving in different traffic scenarios,” IEEE Trans. Intell. Veh., Vol.6, No.2, pp. 299-309, 2021. https://doi.org/10.1109/TIV.2020.3025484
- [6] H. D. Nguyen, D. Kim, Y. S. Son, and K. Han, “Linear time-varying MPC-based autonomous emergency steering control for collision avoidance,” IEEE Trans. Veh. Technol., Vol.72, No.10, pp. 12713-12727, 2023. https://doi.org/10.1109/TVT.2023.3269787
- [7] G. Li, X. Zhang, H. Guo, B. Lenzo, and N. Guo, “Real-time optimal trajectory planning for autonomous driving with collision avoidance using convex optimization,” Automot. Innov., Vol.6, No.3, pp. 481-491, 2023. https://doi.org/10.1007/s42154-023-00222-7
- [8] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering control for autonomous vehicle systems,” IEEE Trans. Control Syst. Technol., Vol.15, No.3, pp. 566-580, 2007. https://doi.org/10.1109/TCST.2007.894653
- [9] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC-based approach to active steering for autonomous vehicle systems,” Int. J. Veh. Auton. Syst., Vol.3, Nos.2-4, pp. 265-291, 2005. https://doi.org/10.1504/IJVAS.2005.008237
- [10] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive active steering and obstacle avoidance for autonomous ground vehicles,” Control Eng. Practice, Vol.17, No.7, pp. 741-750, 2009. https://doi.org/10.1016/j.conengprac.2008.12.001
- [11] H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: A case study of obstacle avoidance for an intelligent vehicle,” IEEE Trans. Ind. Inform., Vol.14, No.9, pp. 4273-4283, 2018. https://doi.org/10.1109/TII.2018.2815531
- [12] M. Ammour, R. Orjuela, and M. Basset, “A MPC combined decision making and trajectory planning for autonomous vehicle collision avoidance,” IEEE Trans. Intell. Transp. Syst., Vol.23, No.12, pp. 24805-24817, 2022. https://doi.org/10.1109/TITS.2022.3210276
- [13] M. A. Abbas, R. Milman, and J. M. Eklund, “Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles,” Can. J. Electr. Comp. Eng., Vol.40, No.1, pp. 12-22, 2017. https://doi.org/10.1109/CJECE.2016.2609803
- [14] M. Marcano, S. Díaz, J. Pérez, and E. Irigoyen, “A review of shared control for automated vehicles: Theory and applications,” IEEE Trans. Hum. Mach. Syst., Vol.50, Issue 6, pp. 475-491, 2020. https://doi.org/10.1109/THMS.2020.3017748
- [15] S. Ko and R. Langari, “Shared control between human driver and machine based on game theoretical model predictive control framework,” 2020 IEEE/ASME Int. Conf. Adv. Intell. Mechatron., pp. 649-654, 2020. https://doi.org/10.1109/AIM43001.2020.9158876
- [16] M. Li, X. Song, H. Cao, J. Wang, Y. Huang, C. Hu, and H. Wang, “Shared control with a novel dynamic authority allocation strategy based on game theory and driving safety field,” Mech. Syst. Signal Proc., Vol.124, pp. 199-216, 2019. https://doi.org/10.1016/j.ymssp.2019.01.040
- [17] B. Ma, Y. Liu, X. Na, Y. Liu, and Y. Yang, “A shared steering controller design based on steer-by-wire system considering human-machine goal consistency,” J. Frankl. Inst., Vol.356, No.8, pp. 4397-4419, 2019. https://doi.org/10.1016/j.jfranklin.2018.12.028
- [18] J. Han, J. Zhao, B. Zhu, and D. Song, “Adaptive steering torque coupling framework considering conflict resolution for human-machine shared driving,” IEEE Trans. Intell. Transp. Syst., Vol.23, No.8, pp. 10983-10995, 2022. http://dx.doi.org/10.1109/TITS.2021.3098466
- [19] S. K. Swain, J. J. Rath, and K. C. Veluvolu, “Cooperative game theory based robust shared lateral control for driver vehicle interactions,” Control Eng. Practice, Vol.141, Article No.105678, 2023. https://doi.org/10.1016/j.conengprac.2023.105678
- [20] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Safe driving envelopes for shared control of ground vehicles,” IFAC Proc. Volumes, Vol.46, No.21, pp. 831-836, 2013. https://doi.org/10.3182/20130904-4-JP-2042.00096
- [21] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control using safe envelopes for obstacle avoidance and vehicle stability,” IEEE Trans. Intell. Transp. Syst., Vol.17, No.2, pp. 441-451, 2016. https://doi.org/10.1109/TITS.2015.2453404
- [22] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance and stabilization for autonomous vehicles in emergency scenarios,” IEEE Trans. Control Syst. Technol., Vol.25, No.4, pp. 1204-1216, 2017. https://doi.org/10.1109/TCST.2016.2599783
- [23] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus, “Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model,” IEEE Trans. Intell. Transp. Syst., Vol.19, No.9, pp. 2994-3008, 2018. https://doi.org/10.1109/TITS.2017.2771351
- [24] J. Talbot, M. Brown, and J. C. Gerdes, “Shared control up to the limits of vehicle handling,” IEEE Trans. Intell. Veh., Vol.9, No.1, pp. 2977-2987, 2024. https://doi.org/10.1109/TIV.2023.3300989
- [25] M. Abe, “Vehicle handling dynamics: Theory and application,” Butterworth-Heinemann, 2015.
- [26] Z. Ercan, A. Carvalho, S. Lefèvre, F. Borrelli, H. E. Tseng, and M. Gokasan, “Torque-based steering assistance for collision avoidance during lane changes,” J. Edelmann, M. Plöchl, and P. Pfeffer (Eds.), “Advanced Vehicle Control,” pp. 43-48, CRC Press, 2016. https://doi.org/10.1201/9781315265285
- [27] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” 1990 IEEE Int. Conf. Robot. Autom., pp. 384-389, 1990. https://doi.org/10.1109/ROBOT.1990.126006
- [28] C. Huang, P. Hang, J. Wu, A.-T. Nguyen, and C. Lv, “Reference-free human-automation shared control for obstacle avoidance of automated vehicles,” 2020 IEEE Int. Conf. Syst. Man Cybern., pp. 4398-4403, 2020. https://doi.org/10.1109/SMC42975.2020.9283287
- [29] R. Rajamani, “Vehicle dynamics and control,” Springer, 2011. https://doi.org/10.1007/978-1-4614-1433-9
- [30] P. S. G. Cisneros and H. Werner, “Nonlinear model predictive control for models in quasi-linear parameter varying form,” Int. J. Robust Nonlinear Control, Vol.30, No.10, pp. 3945-3959, 2020. https://doi.org/10.1002/rnc.4973
- [31] J. M. Maciejowski and M. Huzmezan, “Predictive control,” J.-F. Magni, S. Bennani, and J. Terlouw (Eds.), “Robust Flight Control: A Design Challenge,” pp. 125-134, Springer, 2007. https://doi.org/10.1007/BFb0113856
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.