single-rb.php

JRM Vol.37 No.4 pp. 835-851
doi: 10.20965/jrm.2025.p0835
(2025)

Paper:

Driving Assistance for Collision Avoidance by Simultaneous Intervention in Steering and Throttle Operations

Renlong Wu ORCID Icon and Nobutaka Wada ORCID Icon

Graduate School of Advanced Science and Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan

Received:
November 14, 2024
Accepted:
February 19, 2025
Published:
August 20, 2025
Keywords:
shared control, model predictive control, collision avoidance, steering wheel torque control, acceleration control
Abstract

This paper presents a novel shared control algorithm based on quasi-linear parameter varying model predictive control (qLPV-MPC) for the purpose of preventing vehicle collisions during lane-changing maneuvers and maintaining the vehicle’s position within the lane at all times. The algorithm optimizes the control solution by transforming it into a quadratic programming problem, thus enhancing computational efficiency. By sharing control over both vehicle acceleration and steering wheel torque, the algorithm provides coupled lateral and longitudinal dynamic control, allowing simultaneous acceleration/deceleration adjustments and steering torque application for effective collision avoidance. Notably, the algorithm operates independently of a reference path, allowing the driver to retain primary control over vehicle movement, while the controller intervenes only in high-risk situations. Simulation scenarios, including rear-end, side-impact, and multi-vehicle collision cases, are employed to validate the algorithm’s effectiveness in various collision avoidance contexts.

Safe overtaking via shared control

Safe overtaking via shared control

Cite this article as:
R. Wu and N. Wada, “Driving Assistance for Collision Avoidance by Simultaneous Intervention in Steering and Throttle Operations,” J. Robot. Mechatron., Vol.37 No.4, pp. 835-851, 2025.
Data files:
References
  1. [1] I. Skog and P. Handel, “In-car positioning and navigation technologies—A survey,” IEEE Trans. Intell. Transp. Syst., Vol.10, No.1, pp. 4-21, 2009. https://doi.org/10.1109/TITS.2008.2011712
  2. [2] H. L. Bloecher, J. Dickmann, and M. Andres, “Automotive active safety & comfort functions using radar,” IEEE Int. Conf. on Ultra-Wideband (ICUWB), pp. 490-494, 2009. https://doi.org/10.1109/ICUWB.2009.5288790
  3. [3] B. Kouvaritakis and M. Cannon, “Model predictive control,” Springer, 2016. https://doi.org/10.1007/978-3-319-24853-0
  4. [4] P. Stano, U. Montanaro, D. Tavernini, M. Tufo, G. Fiengo, L. Novella, and A. Sorniotti, “Model predictive path tracking control for automated road vehicles: A review,” Annu. Rev. Control, Vol.55, pp. 194-236, 2023. https://doi.org/10.1016/j.arcontrol.2022.11.001
  5. [5] F. Mohseni, E. Frisk, and L. Nielsen, “Distributed cooperative MPC for autonomous driving in different traffic scenarios,” IEEE Trans. Intell. Veh., Vol.6, No.2, pp. 299-309, 2021. https://doi.org/10.1109/TIV.2020.3025484
  6. [6] H. D. Nguyen, D. Kim, Y. S. Son, and K. Han, “Linear time-varying MPC-based autonomous emergency steering control for collision avoidance,” IEEE Trans. Veh. Technol., Vol.72, No.10, pp. 12713-12727, 2023. https://doi.org/10.1109/TVT.2023.3269787
  7. [7] G. Li, X. Zhang, H. Guo, B. Lenzo, and N. Guo, “Real-time optimal trajectory planning for autonomous driving with collision avoidance using convex optimization,” Automot. Innov., Vol.6, No.3, pp. 481-491, 2023. https://doi.org/10.1007/s42154-023-00222-7
  8. [8] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering control for autonomous vehicle systems,” IEEE Trans. Control Syst. Technol., Vol.15, No.3, pp. 566-580, 2007. https://doi.org/10.1109/TCST.2007.894653
  9. [9] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC-based approach to active steering for autonomous vehicle systems,” Int. J. Veh. Auton. Syst., Vol.3, Nos.2-4, pp. 265-291, 2005. https://doi.org/10.1504/IJVAS.2005.008237
  10. [10] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive active steering and obstacle avoidance for autonomous ground vehicles,” Control Eng. Practice, Vol.17, No.7, pp. 741-750, 2009. https://doi.org/10.1016/j.conengprac.2008.12.001
  11. [11] H. Guo, C. Shen, H. Zhang, H. Chen, and R. Jia, “Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: A case study of obstacle avoidance for an intelligent vehicle,” IEEE Trans. Ind. Inform., Vol.14, No.9, pp. 4273-4283, 2018. https://doi.org/10.1109/TII.2018.2815531
  12. [12] M. Ammour, R. Orjuela, and M. Basset, “A MPC combined decision making and trajectory planning for autonomous vehicle collision avoidance,” IEEE Trans. Intell. Transp. Syst., Vol.23, No.12, pp. 24805-24817, 2022. https://doi.org/10.1109/TITS.2022.3210276
  13. [13] M. A. Abbas, R. Milman, and J. M. Eklund, “Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles,” Can. J. Electr. Comp. Eng., Vol.40, No.1, pp. 12-22, 2017. https://doi.org/10.1109/CJECE.2016.2609803
  14. [14] M. Marcano, S. Díaz, J. Pérez, and E. Irigoyen, “A review of shared control for automated vehicles: Theory and applications,” IEEE Trans. Hum. Mach. Syst., Vol.50, Issue 6, pp. 475-491, 2020. https://doi.org/10.1109/THMS.2020.3017748
  15. [15] S. Ko and R. Langari, “Shared control between human driver and machine based on game theoretical model predictive control framework,” 2020 IEEE/ASME Int. Conf. Adv. Intell. Mechatron., pp. 649-654, 2020. https://doi.org/10.1109/AIM43001.2020.9158876
  16. [16] M. Li, X. Song, H. Cao, J. Wang, Y. Huang, C. Hu, and H. Wang, “Shared control with a novel dynamic authority allocation strategy based on game theory and driving safety field,” Mech. Syst. Signal Proc., Vol.124, pp. 199-216, 2019. https://doi.org/10.1016/j.ymssp.2019.01.040
  17. [17] B. Ma, Y. Liu, X. Na, Y. Liu, and Y. Yang, “A shared steering controller design based on steer-by-wire system considering human-machine goal consistency,” J. Frankl. Inst., Vol.356, No.8, pp. 4397-4419, 2019. https://doi.org/10.1016/j.jfranklin.2018.12.028
  18. [18] J. Han, J. Zhao, B. Zhu, and D. Song, “Adaptive steering torque coupling framework considering conflict resolution for human-machine shared driving,” IEEE Trans. Intell. Transp. Syst., Vol.23, No.8, pp. 10983-10995, 2022. http://dx.doi.org/10.1109/TITS.2021.3098466
  19. [19] S. K. Swain, J. J. Rath, and K. C. Veluvolu, “Cooperative game theory based robust shared lateral control for driver vehicle interactions,” Control Eng. Practice, Vol.141, Article No.105678, 2023. https://doi.org/10.1016/j.conengprac.2023.105678
  20. [20] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Safe driving envelopes for shared control of ground vehicles,” IFAC Proc. Volumes, Vol.46, No.21, pp. 831-836, 2013. https://doi.org/10.3182/20130904-4-JP-2042.00096
  21. [21] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control using safe envelopes for obstacle avoidance and vehicle stability,” IEEE Trans. Intell. Transp. Syst., Vol.17, No.2, pp. 441-451, 2016. https://doi.org/10.1109/TITS.2015.2453404
  22. [22] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance and stabilization for autonomous vehicles in emergency scenarios,” IEEE Trans. Control Syst. Technol., Vol.25, No.4, pp. 1204-1216, 2017. https://doi.org/10.1109/TCST.2016.2599783
  23. [23] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus, “Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model,” IEEE Trans. Intell. Transp. Syst., Vol.19, No.9, pp. 2994-3008, 2018. https://doi.org/10.1109/TITS.2017.2771351
  24. [24] J. Talbot, M. Brown, and J. C. Gerdes, “Shared control up to the limits of vehicle handling,” IEEE Trans. Intell. Veh., Vol.9, No.1, pp. 2977-2987, 2024. https://doi.org/10.1109/TIV.2023.3300989
  25. [25] M. Abe, “Vehicle handling dynamics: Theory and application,” Butterworth-Heinemann, 2015.
  26. [26] Z. Ercan, A. Carvalho, S. Lefèvre, F. Borrelli, H. E. Tseng, and M. Gokasan, “Torque-based steering assistance for collision avoidance during lane changes,” J. Edelmann, M. Plöchl, and P. Pfeffer (Eds.), “Advanced Vehicle Control,” pp. 43-48, CRC Press, 2016. https://doi.org/10.1201/9781315265285
  27. [27] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” 1990 IEEE Int. Conf. Robot. Autom., pp. 384-389, 1990. https://doi.org/10.1109/ROBOT.1990.126006
  28. [28] C. Huang, P. Hang, J. Wu, A.-T. Nguyen, and C. Lv, “Reference-free human-automation shared control for obstacle avoidance of automated vehicles,” 2020 IEEE Int. Conf. Syst. Man Cybern., pp. 4398-4403, 2020. https://doi.org/10.1109/SMC42975.2020.9283287
  29. [29] R. Rajamani, “Vehicle dynamics and control,” Springer, 2011. https://doi.org/10.1007/978-1-4614-1433-9
  30. [30] P. S. G. Cisneros and H. Werner, “Nonlinear model predictive control for models in quasi-linear parameter varying form,” Int. J. Robust Nonlinear Control, Vol.30, No.10, pp. 3945-3959, 2020. https://doi.org/10.1002/rnc.4973
  31. [31] J. M. Maciejowski and M. Huzmezan, “Predictive control,” J.-F. Magni, S. Bennani, and J. Terlouw (Eds.), “Robust Flight Control: A Design Challenge,” pp. 125-134, Springer, 2007. https://doi.org/10.1007/BFb0113856

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 19, 2025