single-rb.php

JRM Vol.35 No.5 pp. 1165-1176
doi: 10.20965/jrm.2023.p1165
(2023)

Paper:

Analysis of Inward Vascular Remodeling Focusing on Endothelial–Perivascular Crosstalk in a Microfluidic Device

Ryosuke Murai*, Masafumi Watanabe* ORCID Icon, and Ryo Sudo*,** ORCID Icon

*School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

**Department of System Design Engineering, Facluty of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

Received:
April 21, 2023
Accepted:
June 8, 2023
Published:
October 20, 2023
Keywords:
vascular remodeling, microfluidic device
Abstract

Vascular remodeling is a crucial process for the effective delivery of oxygen and nutrients to the entire body during vascular formation. However, detailed mechanisms underlying vascular remodeling are not yet fully understood owing to the absence of an appropriate experimental model. To address this, in this study, we utilized a microfluidic vascular model with perivascular cells to investigate the mechanism of vascular remodeling by culturing human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs) in a microfluidic device. We compared two different cell culture conditions: culturing HUVECs and MSCs (1) separately in different channels and (2) in the same channel. In both conditions, microvascular networks covered with perivascular cells were formed. Interestingly, a significant inward vascular remodeling occurred over time when HUVECs and MSCs were cultured in different channels. This remodeling was mediated by direct endothelial–perivascular crosstalk through α6 integrin. Furthermore, computational fluid analysis revealed that hypothetical shear stress on the luminal surface of microvessels was attenuated during inward vascular remodeling, suggesting that the remodeling might be an adaptive change. Our findings and the microfluidic model will be useful not only for further elucidation of mechanisms underlying physiological and pathological vascular remodeling but also for constructing functional vascularized tissues and organs by controlling vascular remodeling.

Live cell imaging of inward vascular remodeling

Live cell imaging of inward vascular remodeling

Cite this article as:
R. Murai, M. Watanabe, and R. Sudo, “Analysis of Inward Vascular Remodeling Focusing on Endothelial–Perivascular Crosstalk in a Microfluidic Device,” J. Robot. Mechatron., Vol.35 No.5, pp. 1165-1176, 2023.
Data files:
References
  1. [1] A. R. Pries and T. W. Secomb, “Making microvascular networks work: Angiogenesis, remodeling, and pruning,” Physiology, Vol.29, No.6, pp. 446-455, 2014. https://doi.org/10.1152/physiol.00012.2014
  2. [2] R. Santamaría, M. González-Álvarez, R. Delgado, S. Esteban, and A. G. Arroyo, “Remodeling of the microvasculature: May the blood flow be with you,” Front. Physiol., Vol.11, Article No.586852, 2020. https://doi.org/10.3389/fphys.2020.586852
  3. [3] C. M. Peppiatt, C. Howarth, P. Mobbs, and D. Attwell, “Bidirectional control of CNS capillary diameter by pericytes,” Nature, Vol.443, No.7112, pp. 700-704, 2006. https://doi.org/10.1038/nature05193
  4. [4] A. L. Gonzales et al., “Contractile pericytes determine the direction of blood flow at capillary junctions,” Proc. Natl. Acad. Sci., Vol.117, No.43, pp. 27022-27033, 2020. https://doi.org/10.1073/pnas.1922755117
  5. [5] M. R. Ward et al., “Low blood flow after angioplasty augments mechanisms of restenosis: Inward vessel remodeling, cell migration, and activity of genes regulating migration,” Arterioscler. Thromb. Vasc. Biol., Vol.21, No.2, pp. 208-213, 2001. https://doi.org/10.1161/01.ATV.21.2.208
  6. [6] M. Sigovan et al., “Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD,” Ann. Biomed. Eng., Vol.41, No.4, pp. 657-668, 2013. https://doi.org/10.1007/s10439-012-0703-4
  7. [7] Y. Shin et al., “Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels,” Nat. Protoc., Vol.7, No.7, pp. 1247-1259, 2012. https://doi.org/10.1038/nprot.2012.051
  8. [8] W. J. Polacheck, M. L. Kutys, J. B. Tefft, and C. S. Chen, “Microfabricated blood vessels for modeling the vascular transport barrier,” Nat. Protoc., Vol.14, No.5, pp. 1425-1454, 2019. https://doi.org/10.1038/s41596-019-0144-8
  9. [9] R. K. Jain, P. Au, J. Tam, D. G. Duda, and D. Fukumura, “Engineering vascularized tissue,” Nat. Biotechnol., Vol.23, No.7, pp. 821-823, 2005. https://doi.org/10.1038/nbt0705-821
  10. [10] G. Simitian, M. Virumbrales-Muñoz, C. Sánchez-de-Diego, D. J. Beebe, and D. Kosoff, “Microfluidics in vascular biology research: A critical review for engineers, biologists, and clinicians,” Lab Chip, Vol.22, No.19, pp. 3618-3636, 2022. https://doi.org/10.1039/D2LC00352J
  11. [11] J. W. Song and L. L. Munn, “Fluid forces control endothelial sprouting,” Proc. Natl. Acad. Sci., Vol.108, No.37, pp. 15342-15347, 2011. https://doi.org/10.1073/pnas.1105316108
  12. [12] J. W. Song, D. Bazou, and L. L. Munn, “Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis,” Integr. Biol., Vol.4, No.8, pp. 857-862, 2012. https://doi.org/10.1039/c2ib20061a
  13. [13] J. H. Yeon, H. R. Ryu, M. Chung, Q. P. Hu, and N. L. Jeon, “In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices,” Lab Chip, Vol.12, No.16, pp. 2815-2822, 2012. https://doi.org/10.1039/C2LC40131B
  14. [14] Y.-H. Hsu et al., “Full range physiological mass transport control in 3D tissue cultures,” Lab Chip, Vol.13, No.1, pp. 81-89, 2013. https://doi.org/10.1039/C2LC40787F
  15. [15] X. Wang et al., “Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels,” Lab Chip, Vol.16, No.2, pp. 282-290, 2016. https://doi.org/10.1039/C5LC01050K
  16. [16] Y. Nashimoto et al., “Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device,” Integr. Biol., Vol.9, No.6, pp. 506-518, 2017. https://doi.org/10.1039/c7ib00024c
  17. [17] Y. Abe et al., “Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation,” APL Bioeng., Vol.3, No.3, Article No.036102, 2019. https://doi.org/10.1063/1.5094735
  18. [18] K. Yamamoto et al., “The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device,” J. Biomech. Sci. Eng., Vol.8, No.2, pp. 114-128, 2013. https://doi.org/10.1299/jbse.8.114
  19. [19] K. Yamamoto et al., “Construction of continuous capillary networks stabilized by pericyte-like perivascular cells,” Tissue Eng. A, Vol.25, Nos.5-6, pp. 499-510, 2019. https://doi.org/10.1089/ten.tea.2018.0186
  20. [20] M. Watanabe and R. Sudo, “Establishment of an in vitro vascular anastomosis model in a microfluidic device,” J. Biomech. Sci. Eng., Vol.14, No.3, Article No.18-00521, 2019. https://doi.org/10.1299/jbse.18-00521
  21. [21] H. Uwamori, Y. Ono, T. Yamashita, K. Arai, and R. Sudo, “Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions,” Microvasc. Res., Vol.122, pp. 60-70, 2019. https://doi.org/10.1016/j.mvr.2018.11.007
  22. [22] Y. Mabuchi et al., “LNGFR+THY-1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells,” Stem Cell Rep., Vol.1, No.2, pp. 152-165, 2013. https://doi.org/10.1016/j.stemcr.2013.06.001
  23. [23] D. Ribatti, B. Nico, and E. Crivellato, “The role of pericytes in angiogenesis,” Int. J. Dev. Biol., Vol.55, No.3, pp. 261-268, 2011. https://doi.org/10.1387/ijdb.103167dr
  24. [24] S. A. Williams et al., “Dynamic measurement of human capillary blood pressure,” Clin. Sci., Vol.74, No.5, pp. 507-512, 1988. https://doi.org/10.1042/cs0740507
  25. [25] P. C. Stapor, W. Wang, W. L. Murfee, and D. B. Khismatullin, “The distribution of fluid shear stresses in capillary sprouts,” Cardiovasc. Eng. Technol., Vol.2, No.2, pp. 124-136, 2011. https://doi.org/10.1007/s13239-011-0041-y
  26. [26] K. M. Gray and K. M. Stroka, “Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models,” Semin. Cell Dev. Biol., Vol.71, pp. 106-117, 2017. https://doi.org/10.1016/j.semcdb.2017.06.002
  27. [27] K. Gaengel, G. Genové, A. Armulik, and C. Betsholtz, “Endothelial-mural cell signaling in vascular development and angiogenesis,” Arterioscler. Thromb. Vasc. Biol., Vol.29, No.5, pp. 630-638, 2009. https://doi.org/10.1161/ATVBAHA.107.161521
  28. [28] Y.-H. Wang, D.-B. Wu, B. Chen, E.-Q. Chen, and H. Tang, “Progress in mesenchymal stem cell-based therapy for acute liver failure,” Stem Cell Res. Ther., Vol.9, No.1, Article No.227, 2018. https://doi.org/10.1186/s13287-018-0972-4
  29. [29] N. P. Staff, D. T. Jones, and W. Singer, “Mesenchymal stromal cell therapies for neurodegenerative diseases,” Mayo Clin. Proc., Vol.94, No.5, pp. 892-905, 2019. https://doi.org/10.1016/j.mayocp.2019.01.001
  30. [30] D. Jovic et al., “A brief overview of global trends in MSC-based cell therapy,” Stem Cell Rev. Rep., Vol.18, No.5, pp. 1525-1545, 2022. https://doi.org/10.1007/s12015-022-10369-1
  31. [31] H. Kamihata et al., “Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines,” Circulation, Vol.104, No.9, pp. 1046-1052, 2001. https://doi.org/10.1161/hc3501.093817
  32. [32] N. F. Renna, N. de las Heras, and R. M. Miatello, “Pathophysiology of vascular remodeling in hypertension,” Int. J. Hypertens., Vol.2013, Article No.808353, 2013. https://doi.org/10.1155/2013/808353
  33. [33] N. B. Hamilton, D. Attwell, and C. N. Hall, “Pericyte-mediated regulation of capillary diameter: A component of neurovascular coupling in health and disease,” Front. Neuroenergetics, Vol.2, Article No.5, 2010. https://doi.org/10.3389/fnene.2010.00005
  34. [34] Q. Shen et al., “Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions,” Cell Stem Cell, Vol.3, No.3, pp. 289-300, 2008. https://doi.org/10.1016/j.stem.2008.07.026
  35. [35] B. Carrion, Y. P. Kong, D. Kaigler, and A. J. Putnam, “Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor,” Exp. Cell Res., Vol.319, No.19, pp. 2964-2976, 2013. https://doi.org/10.1016/j.yexcr.2013.09.007
  36. [36] L. E. Reynolds et al., “Dual role of pericyte α6β1-integrin in tumour blood vessels,” J. Cell Sci., Vol.130, No.9, pp. 1583-1595, 2017. https://doi.org/10.1242/jcs.197848
  37. [37] T. W. Secomb, J. P. Alberding, R. Hsu, M. W. Dewhirst, and A. R. Pries, “Angiogenesis: An adaptive dynamic biological patterning problem,” PLOS Comput. Biol., Vol.9, No.3, Article No.e1002983, 2013. https://doi.org/10.1371/journal.pcbi.1002983
  38. [38] V. A. Korshunov, S. M. Schwartz, and B. C. Berk, “Vascular remodeling: Hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon,” Arterioscler. Thromb. Vasc. Biol., Vol.27, No.8, pp. 1722-1728, 2007. https://doi.org/10.1161/ATVBAHA.106.129254
  39. [39] L. D. Browne et al., “The role of shear stress in arteriovenous fistula maturation and failure: A systematic review,” PLoS ONE, Vol.10, No.12, Article No.e0145795, 2015. https://doi.org/10.1371/journal.pone.0145795
  40. [40] J. D. Humphrey and M. A. Schwartz, “Vascular mechanobiology: Homeostasis, adaptation, and disease,” Annu. Rev. Biomed. Eng., Vol.23, pp. 1-27, 2021. https://doi.org/10.1146/annurev-bioeng-092419-060810
  41. [41] Q. Chen et al., “Haemodynamics-driven developmental pruning of brain vasculature in zebrafish,” PLOS Biol., Vol.10, No.8, Article No.e1001374, 2012. https://doi.org/10.1371/journal.pbio.1001374
  42. [42] M. O. Bernabeu et al., “Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis,” J. R. Soc. Interface, Vol.11, No.99, Article No.20140543, 2014. https://doi.org/10.1098/rsif.2014.0543
  43. [43] C. A. Franco et al., “Dynamic endothelial cell rearrangements drive developmental vessel regression,” PLOS Biol., Vol.13, No.4, Article No.e1002125, 2015. https://doi.org/10.1371/journal.pbio.1002125
  44. [44] H. Sano, M. Watanabe, T. Yamashita, K. Tanishita, and R. Sudo, “Control of vessel diameters mediated by flow-induced outward vascular remodeling in vitro,” Biofabrication, Vol.12, No.4, Article No.045008, 2020. https://doi.org/10.1088/1758-5090/ab9316
  45. [45] E. Sho et al., “Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix.,” Exp. Mol. Pathol., Vol.73, No.2, pp. 142-153, 2002. https://doi.org/10.1006/exmp.2002.2457
  46. [46] M. A. Patterson et al., “Shear force regulates matrix metalloproteinase activity in human saphenous vein organ culture,” J. Surg. Res., Vol.95, No.1, pp. 67-72, 2001. https://doi.org/10.1006/jsre.2000.6045

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 06, 2024