JRM Vol.33 No.6 pp. 1223-1233
doi: 10.20965/jrm.2021.p1223


Development of AUV MONACA - Hover-Capable Platform for Detailed Observation Under Ice –

Hirokazu Yamagata*1, Shuma Kochii*1, Hiroshi Yoshida*2, Yoshifumi Nogi*3,*4, and Toshihiro Maki*1

*1Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

*2Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan

*3National Institute of Polar Research (NIPR)
10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan

*4Department of Polar Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies (SOKENDAI)
10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan

June 2, 2021
September 10, 2021
December 20, 2021
autonomous underwater vehicle (AUV), under-ice survey, Antarctica

The melting of ice and changes in ocean currents in Antarctica must be investigated to understand global climate change. In this regard, the volume changes of sea ice and ice shelves, bathymetry, and ocean currents in the Antarctic Ocean must be measured in three dimensions. Therefore, the use of autonomous underwater vehicles (AUVs), which can directly observe under ice, is being considered. The authors developed an AUV named Mobility Oriented Nadir AntarctiC Adventurer (MONACA) to observe sea ice and the lower region of the ice shelf in the Antarctic Ocean. Herein, we describe MONACA and its basic autonomous navigation methods (altitude control, depth control, and waypoint tracking), as well as report the results of a sea experiment conducted in Shimoda Bay, Japan. During the 5-day sea trial, the MONACA successfully measured bathymetry by tracking 15 waypoints in sequence, switching the control criteria in the z-axis direction between 3 m depth and 3 m altitude.


AUV MONACA" at the sea experiment"

Cite this article as:
H. Yamagata, S. Kochii, H. Yoshida, Y. Nogi, and T. Maki, “Development of AUV MONACA - Hover-Capable Platform for Detailed Observation Under Ice –,” J. Robot. Mechatron., Vol.33 No.6, pp. 1223-1233, 2021.
Data files:
  1. [1] E. Rignot, S. Jacobs, J. Mouginot, and B. Scheuchl, “Ice-shelf melting around Antarctica,” Science, Vol.341, No.6143, pp. 266-270, 2013.
  2. [2] T. Fukuda, S. Sugiyama, T. Sawagaki, and K. Nakamura, “Recent variations in the terminus position, ice velocity and surface elevation of Langhovde Glacier,” East Antarctica, Antarctic Science, Vol.26, No.5, pp. 636-645, 2014.
  3. [3] K. Makinson, P. G. Anker, J. Garcés, D. J. Goodger, S. Polfrey, J. Rix, and R. Zamora, “Development of a clean hot water drill to access Subglacial Lake CECs,” West Antarctica, Annals of Glaciology, pp. 1-13, 2021.
  4. [4] S. Sugiyama, T. Sawagaki, T. Fukuda, and S. Aoki, “Active water exchange and life near the grounding line of an Antarctic outlet glacier,” Earth and Planetary Science Letters, Vol.399, pp. 52-60, 2014.
  5. [5] S. McPhail, R. Templeton, M. Pebody, D. Roper, and R. Morrison, “Autosub long range AUV missions under the Filchner and Ronne ice shelves in the Weddell sea, Antarctica-an engineering perspective,” Proc. of OCEANS 2019-Marseille, pp. 1-8, 2019.
  6. [6] R. Camilli and Z. Duguid, “Improving resource management for unattended observation of the marginal ice zone using autonomous underwater gliders,” Frontiers in Robotics and AI, Vol.7, 184, 2020.
  7. [7] C. Kaminski, T. Crees, J. Ferguson, A. Forrest, J. Williams, D. Hopkin, and G. Heard, “12 days under ice – an historic AUV deployment in the Canadian High Arctic,” 2010 IEEE/OES Autonomous Underwater Vehicles, pp. 1-11, 2010.
  8. [8] P. King, K. Ziürcher, and I. Bowden-Floyd, “A risk-averse approach to mission planning: nupiri muka at the Thwaites Glacier,” 2020 IEEE/OES Autonomous Underwater Vehicles Symp., pp. 1-5, 2020.
  9. [9] M. E. Furlong, D. Paxton, P. Stevenson, M. Pebody, S. D. McPhail, and J. Perrett, “Autosub long range: A long range deep diving AUV for ocean monitoring,” 2012 IEEE/OES Autonomous Underwater Vehicles, pp. 1-7, 2012.
  10. [10] A. Wåhlin, B. Queste, A. Graham, K. Hogan, L. Boehme, K. Heywood, and J. Wellner, “Warm water flow and mixing beneath Thwaites Glacier ice shelf, West Antarctica,” EGU General Assembly Conf. Abstracts, p. 19934, 2020.
  11. [11] B. Butler and V. den Hertog, “Theseus: a cable-laying AUV,” Proc. of OCEANS’93, pp. I210-I213, 1993.
  12. [12] J. G. Bellingham, C. A. Goudey, T. R. Consi, J. W. Bales, D. K. Atwood, J. J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” Proc. of IEEE Symp. on Autonomous Underwater Vehicle Technology (AUV’94), pp. 148-155, 1994.
  13. [13] M. V. Jakuba, C. N. Roman, H. Singh, C. Murphy, C. Kunz, C. Willis, and R. A. Sohn, “Long – baseline acoustic navigation for under – ice autonomous underwater vehicle operations,” J. of Field Robotics, Vol.25, No.11-12, pp. 861-879, 2008.
  14. [14] P. W. Kimball, E. B. Clark, M. Scully, K. Richmond, C. Flesher, L. E. Lindzey, and J. Moor, “The ARTEMIS under – ice AUV docking system,” J. of Field Robotics, Vol.35, No.2, pp. 299-308, 2018.
  15. [15] A. Kukulya, A. Plueddemann, T. Austin, R. Stokey, M. Purcell, B. Allen, and J. Pietro, “Under-ice operations with a REMUS-100 AUV in the Arctic,” 2010 IEEE/OES Autonomous Underwater Vehicles, pp. 1-8, 2010.
  16. [16] V. Asper, W. Smith, C. Lee, J. Gobat, K. Heywood, B. Queste, and M. Dinniman, “Using gliders to study a phytoplankton bloom in the Ross Sea, Antarctica,” OCEANS’11 MTS/IEEE KONA, pp. 1-7, 2011.
  17. [17] C. Jones, B. Allsup, and C. DeCollibus, “Slocum glider: Expanding our understanding of the oceans,” 2014 Oceans-St. John’s, pp. 1-10, 2014.
  18. [18] H. Yamagata, T. Maki, H. Yoshida, and Y. Nogi, “Hardware Design of Variable and Compact AUV “MONACA” for Under-Ice Survey of Antarctica,” 2019 IEEE Underwater Technology, pp. 1-4, 2019.
  19. [19] H. Yamagata, T. Maki, H. Yoshidam, and Y. Nogi, “Shallow Sea Trial of the Under Ice AUV ‘MONACA,’” JpGU 2020, 2020.
  20. [20] T. Maki, Y. Noguchi, Y. Kuranaga, K. Masuda, T. Sakamaki, M. Humblet, and Y. Furushima, “Low-altitude and High-speed Terrain Tracking Method for Lightweight AUVs,” J. Robot. Mechatron., Vol.30, No.5, pp. 971-979, 2018.
  21. [21] N. R. Rypkema, E. M. Fischell, and H. Schmidt, “One-way travel-time inverted ultra-short baseline localization for low-cost autonomous underwater vehicles,” 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 4920-4926, 2017.
  22. [22] R. Panish and M. Taylor, “Achieving high navigation accuracy using inertial navigation systems in autonomous underwater vehicles,” OCEANS’11 MTS/IEEE-SPAIN 2011, pp. 1-7, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024