single-rb.php

JRM Vol.32 No.2 pp. 297-304
doi: 10.20965/jrm.2020.p0297
(2020)

Paper:

Tactile Sensor with High-Density Microcantilever and Multiple PDMS Bumps for Contact Detection

Tomoya Fujihashi, Fumitoshi Suga, Ryoma Araki, Jyun Kido, Takashi Abe, and Masayuki Sohgawa

Niigata University
8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan

Received:
October 27, 2019
Accepted:
March 18, 2020
Published:
April 20, 2020
Keywords:
tactile sensor, microcantilever, PDMS bumps, contact detection, gripping control
Abstract

In the study, we investigated a detection method of partial contact of an object owing to curved or uneven surface of the contact object by a tactile sensor. The sensor is developed using three microcantilevers embedded in a polydimethylsiloxane (PDMS) bump. First, three bumps were employed to place a bump for each cantilever. It was possible to detect a contact position because the resistance change in the strain gauge on the cantilever under each bump significantly depended on the contact/non-contact state of each bump. Second, a tactile sensor with high-density arrangement of microcantilevers was used to detect partial or tilted contact situations. The results indicated that the output of a tactile sensor with high-density arrangement of microcantilevers reflected partial or tilted contact. It is suggested that a tactile sensor with multiple bumps and high-density microcantilevers allows for more dexterous gripping control based on the shape of the object and contact angle.

Detection of partial contact with tilting

Detection of partial contact with tilting

Cite this article as:
T. Fujihashi, F. Suga, R. Araki, J. Kido, T. Abe, and M. Sohgawa, “Tactile Sensor with High-Density Microcantilever and Multiple PDMS Bumps for Contact Detection,” J. Robot. Mechatron., Vol.32 No.2, pp. 297-304, 2020.
Data files:
References
  1. [1] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing – From Humans to Humanoids,” IEEE Trans. Robot., Vol.26, No.1, pp. 1-20, doi:10.1109/TRO.2009.2033627, 2010.
  2. [2] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexterous robot hands – Review,” Rob. Auton. Syst., Vol.74, pp. 195-220, doi:10.1016/j.robot.2015.07.015, 2015.
  3. [3] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-hand manipulation in robotics – A review,” Sens. Actuators, A Phys., Vol.167, No.2, pp. 171-187, doi:10.1016/j.sna.2011.02.038, 2011.
  4. [4] D. Yamada, T. Maeno, and Y. Yamada, “Artificial finger skin having ridges and distributed tactile sensors used for grasp force control,” J. Robot. Mechatron., Vol.14, No.2, pp. 140-146, doi:10.20965/jrm.2002.p0140, 2002.
  5. [5] S. Teshigawara, T. Tsutsumi, Y. Suzuki, and M. Shimojo, “High speed and high sensitivity slip sensor for dexterous grasping,” J. Robot. Mechatron., Vol.24, No.2, pp. 298-310, doi:10.20965/jrm.2012.p0298, 2012.
  6. [6] Y. Mizoguchi, K. Tadakuma, H. Hasegawa, A. Ming, M. Ishikawa, and M. Shimojo, “Development of Intelligent Robot Hand Using Proximity, Contact and Slip Sensing,” Trans. Soc. Instrum. Control Eng., Vol.46, No.10, pp. 632-640, doi:10.9746/sicetr.46.632, 2010 (in Japanese).
  7. [7] M. Sohgawa, T. Mima, H. Onishi, T. Kanashima, M. Okuyama, K. Yamashita, M. Noda, M. Higuchi, and H. Noma, “Tactile array sensor with inclined chromium/silicon piezoresistive cantilevers embedded in elastomer,” Proc. of Transducers 2009, pp. 284-287, doi:10.1109/SENSOR.2009.5285509, 2009.
  8. [8] H. Tachibana, S. Kamanaru, T. Mima, M. Sohgawa, T. Kanashima, K. Yamashita, M. Noda, M. Okuyama, H. Noma, and M. Higuchi, “Fabrication and Basic Characteristics of Multiaxial Tactile Sensor with 3 Cantilevers,” IEEJ Trans. Sens. Micromachines, Vol.130, No.6, pp. 223-229, doi:10.1541/ieejsmas.130.223, 2010 (in Japanese).
  9. [9] M. Sohgawa, T. Uematsu, W. Mito, T. Kanashima, M. Okuyama, and H. Noma, “Crosstalk Reduction of Tactile Sensor Array with Projected Cylindrical Elastomer over Sensing Element,” Jpn. J. Appl. Phys., Vol.50, No.6, 06GM08, doi:10.1143/JJAP.50.06GM08, 2011.
  10. [10] D. Hirashima, T. Uematsu, M. Sohgawa, W. Mito, T. Kanashima, M. Okuyama, and H. Noma, “Fabrication of a Flexible Array for Tactile Sensors with Microcantilevers and the Measurement of the Distribution of Normal and Shear Forces,” Jpn. J. Appl. Phys., Vol.50, No.6, 06GM02, doi:10.1143/JJAP.50.06GM02, 2011.
  11. [11] M. Sohgawa, D. Hirashima, Y. Moriguchi, T. Uematsu, W. Mito, T. Kanashima, M. Okuyama, and H. Noma, “Tactile sensor array using microcantilever with nickel-chromium alloy thin film of low temperature coefficient of resistance and its application to slippage detection,” Sens. Actuators A, Vol.186, pp. 32-37, doi:10.1016/j.sna.2011.12.055, 2012.
  12. [12] H. Yokoyama, M. Sohgawa, T. Kanashima, T. Azuma, M. Okuyama, and H. Noma, “Fabrication and Noise Reduction of the Miniature Tactile Sensor Using Through-Silicon-Via Connection with Signal Amplifier,” Jpn. J. Appl. Phys., Vol.52, No.6S, 06GL08, doi:10.7567/JJAP.52.06GL08, 2013.
  13. [13] H. Yokoyama, T. Kanashima, M. Okuyama, T. Abe, H. Noma, T. Azuma, and M. Sohgawa, “Proximity and Tactile Sensing Using a Single MEMS Sensor with Photo- and Strain Sensitivities,” IEEJ Trans. Sens. Micromachines, Vol.134, No.7, pp. 229-234, doi:10.1541/ieejsmas.134.229, 2014 (in Japanese).
  14. [14] M. Sohgawa, A. Nozawa, H. Yokoyama, T. Kanashima, M. Okuyama, T. Abe, H. Noma, and M. Sohgawa, “Multimodal measurement of proximity and touch force by light- and strain-sensitive multifunctional MEMS sensor,” Proc. of IEEE SENSORS 2014, pp. 1749-1752, doi:10.1109/ICSENS.2014.6985362, November 2014.
  15. [15] K. Takahashi, T. Abe, M. Okuyama, H. Noma, and M. Sohgawa, “Surface Texture Characterization Using Optical and Tactile Combined Sensor,” Sens. Mater., Vol.30, No.5, pp. 1091-1101, doi:10.18494/SAM.2018.1786, 2018.
  16. [16] R. Araki, F. Suga, T. Abe, H. Noma, and M. Sohgawa, “Gripping control of delicate and flexible object by electromotive manipulator with proximity and tactile combo MEMS sensor,” Proc. of Transducers 2017, pp. 1140-1143, doi:10.1109/TRANSDUCERS.2017.7994254, June 2017.
  17. [17] R. Araki, T. Abe, H. Noma, and M. Sohgawa, “Electromotive Manipulator Control by Detection of Proximity, Contact, and Slipping Using MEMS Multiaxial Tactile Sensor,” Electr. Eng. Japan, Vol.204, No.2, pp. 44-49, doi:10.1002/eej.23098, 2018.
  18. [18] R. Araki, T. Abe, H. Noma, and M. Sohgawa, “Miniaturization and high-density arrangement of microcantilevers in proximity and tactile sensor for dexterous gripping control,” Micromachines, Vol.9, No.6, 301, doi:10.3390/mi9060301, 2018.
  19. [19] F. Suga, R. Araki, T. Abe, H. Noma, and M. Sohgawa, “Suppression of Deformation for Gripping Soft Objects Using Miniature Tactile Sensor with Hemisphere PDMS,” Proc. of Asia-Pacific Conf. Transducers and Micro-Nano Tech. 2018, 123, June 2018.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024