JRM Vol.28 No.1 pp. 95-103
doi: 10.20965/jrm.2016.p0095

Development Report:

Prototyping Force-Controlled 3-DOF Hydraulic Arms for Humanoid Robots

Kensuke Izawa and Sang-Ho Hyon

College of Science and Engineering, Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577, Japan

April 8, 2015
December 28, 2015
February 20, 2016
hydraulic robot, dual arm, force/torque control, singular perturbation

Prototyping Force-Controlled 3-DOF Hydraulic Arms for Humanoid Robots

Hydraulic dual arm robot prototype

This paper reports on a hydraulic dual arm robot developed as a rapid prototype for our hydraulic humanoid robot. The lightweight arms (4 kg each) have three joints driven by hydraulic linear servo actuators that can achieve higher torque and speed than human arms. A double four-bar linkage provides a wide range of motion (210°) to the shoulder joint. Each joint has torque controllability that is fully utilized for compliant whole-body motion control tasks. Based on singular perturbation analysis, we discuss how damping on the joints is actively modulated by hydraulic force feedback control, which is then utilized in our passivity-based task-space force control scheme. The effectiveness of the proposed system is experimentally evaluated through zero-force tracking gravity compensation with a 10 kg payload and object manipulation tasks.

  1. [1] S. Hyon, T. Yoneda, and D. Suewaka, “Lightweight hydraulic leg to explore agile legged locomotion,” IEEE/RSJ IROS, pp. 4655-4660, 2013.
  2. [2] D. Suewaka, T. Yoneda, K. Takahashi, and S. Hyon, “Design of a fast and lightweight hydraulic biped walking robot,” RSJ 2013, AC1C1-04, 2013.
  3. [3] M. Maeda and T. Miki, “Role of arm action in sprinting,” Reserch Quarterly for Athletics, Vol.80, pp. 13-19, 2010.
  4. [4] M. Fuchs, C. Borst, P. Robuffo Giordano, A. Baumann, E. Kraemer, J. Langwald, R. Gruber, N. Seitz, G. Plank, K. Kunze, R. Burger, F. Schmidt, T. Wimboeck, and G. Hirzinger, “Rollin’ justin – design considerations and realization of a mobile platform for a humanoid upper body,” IEEE ICRA, pp. 4131-4137, 2009.
  5. [5] C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-Schaffer, B. Brunner, H. Hirschmuller, S. Kielhofer, R. Konietschke, M. Suppa, T. Wimbock, F. Zacharias, and G. Hirzinger, “A Humanoid Two-Arm System for Dexterous Manipulation,” IEEE/RAS ICHR, pp. 276-283, 2006.
  6. [6] “DLR Light Weight Root III,” Institute of Robotics and Mechatronics, German Aerospace Center, 2003.
  7. [7] “New Generation Robots MOTOMAN SDA, SIA Series,” Yaskawa Electric Corporation, 2012.
  8. [8] Y. Ito, T. Nakaoka, J. Urata, K. Kobayashi, S. Nozawa, Y. Nakanishi, K. Okada, and M. Inaba, “Development and Verification of Life-Size Humanoid with High-Output Actuation System,” IEEE ICRA, pp. 3433-3438, 2014.
  9. [9] G. Cheng, S. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin, W. Scroggin, and S. C. Jacobsen, “CB: A Humanoid Research Platform for Exploring NeuroScience,” Advanced Robotics, Vol.21, No.10, pp. 1097-1114, 2007.
  10. [10] H. Takahashi, T. Kazama, and J. Oga, “Hydraulic Double-Arm Robot,” TOSHIBA REVIEW, Vol.69, No.5, 2014.
  11. [11] S. Hyon, J. Moren, and G. Cheng, “Humanoid batting with bipedal balancing,” IEEE/RAS ICHR, pp. 493-499, 2008.
  12. [12] T. Baba, Y. Wada, and A. Ito, “Muscular activity pattern during sprint running,” Physical Education Studies, Vol.45, pp. 186-200, 2000.
  13. [13] H. Merrit, “Hydraulic Control Systems,” Wiley, 1967.
  14. [14] H. K. Khalil, “Nonlinear Systems,” 2nd ed, Prentice Hall, 1996.
  15. [15] S. Hyon, “A motor control strategy with virtual musculoskeletal systems for compliant anthropomorphic robots,” IEEE/ASME Trans. on Mechatronics, Vol.14, Issue 6, pp. 677-688, 2009.
  16. [16] S. Hyon, J. G. Hale, and G. Cheng, “Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces,” IEEE Trans. on Robotics, Vol.23, No.5, pp. 884-898, 2007.
  17. [17] S. Arimoto, M. Sekimoto, H. Hashiguchi, and R. Ozawa, “Natural resolution of ill-posedness of inverse kinematics for redundant robots: a challenge to bernstein’s degrees-of-freedom problem,” Advanced Robotics, Vol.19, No.4, pp. 401-434, 2005.
  18. [18] A. Albu-Schaffer, C. Ott, and G. Hirzinger, “A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots,” The Int. J. of Robotics Research, Vol.26, No.1, pp. 23-39, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Sep. 20, 2017