Paper:
Construction Methodology for NIUTS – Bed Servoing System for Body Targets –
Norihiro Koizumi*, Joonho Seo*, Takakazu Funamoto*,
Yutaro Itagaki*, Akira Nomiya**, Akira Ishikawa**,
Hiroyuki Tsukihara*,**, Kiyoshi Yoshinaka***, Naohiko Sugita*,
Yukio Homma**, Yoichiro Matsumoto*, and Mamoru Mitsuishi*
*Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
**Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
***National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
Unwanted motion is a serious problem in enhancing servoing performance in an affected area, which incorporates stones/tumours in non-invasive ultrasound theragnostic systems (NIUTS). To solve this problem, we proposed a new method for restricting the motion of the affected area ventrodorsally in the region of interest (ROI) in ultrasound imaging. To do so, we introduce a bed mechanism for NIUTS. It is confirmed that a human kidney could be tracked and followed appropriately using the proposedmethod and the newly constructed bed system.
Yutaro Itagaki, Akira Nomiya, Akira Ishikawa,
Hiroyuki Tsukihara, Kiyoshi Yoshinaka, Naohiko Sugita,
Yukio Homma, Yoichiro Matsumoto, and Mamoru Mitsuishi, “Construction Methodology for NIUTS – Bed Servoing System for Body Targets –,” J. Robot. Mechatron., Vol.25, No.6, pp. 1088-1096, 2013.
- [1] J. E. Kennedy et al., “High-intensity focused ultrasound: surgery of the future?,” British J. of Radiology, Vol.76, pp. 590-599, 2003.
- [2] J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, “A new method for the generation and use of focused ultrasound in experimental biology,” J. Gen. Physiol., Vol.26, pp. 179-193, 1942.
- [3] T. Ikeda, S. Yoshizawa, M. Tosaki, J. S. Allen, S. Takagi, N. Ohta, T. Kitamura, and Y. Matsumoto, “Cloud Cavitation Control for Lithotripsy Using High Intensity Focused Ultrasound,” Ultrasound Med. Biol., Vol.32, No.9, pp. 1383-1397, 2006.
- [4] F. Wu, Z. L. Wang, Z. Zhang et al., “Acute biological effects of high-intensity focused ultrasound on H22 liver tumours in vivo,” Chin. Ultrasound Med., Vol.13, No.3, 1997.
- [5] G. Tu, T. Y. Qiao, and S. He, “An experimental study on highintensity focused ultrasound in the treatment of VX-2 rabbit kidney tumours,” Chin. J. Urol., Vol.20, No.8, 1999.
- [6] F. Wu, W. Z. Chen, J. Bai, J. Z. Zou, Z. L. Wang, H. Zhu, and Z. B. Wang, “Pathological changes in malignant carcinoma treated with high-intensity focused ultrasound,” Ultrasound Med. Biol., Vol.27, No.8, pp. 1099-1106, 2001.
- [7] J. E. Kennedy et al., “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasound Med. Biol., Vol.42, pp. 931-935, 2004.
- [8] N. Koizumi, J. Seo, T. Funamoto, A. Nomiya, A. Ishikawa, K. Yoshinaka, N. Sugita, Y. Homma, Y. Matsumoto, and M. Mitsuishi, “Technologizing and Digitalizing Medical Professional Skills for a Non-Invasive Ultrasound Theragnostic System,” J. of Robotics and Mechatronics, Vol.24, No.2, pp. 379-388, 2012.
- [9] N. Koizumi, H. Tsukihara, S. Takamoto, H. Hashizume, and M. Mitsuishi, “Robot vision technology for technologizing and digitalization of medical diagnostic and therapeutic skills,” Int. J. of Automation Technology, Vol.3, No.5, pp. 541-550, 2009.
- [10] N. Koizumi, S. Warisawa, M. Nagoshi, H. Hashizume, and M. Mitsuishi, “Construction methodology for a remote ultrasound diagnostic system,” IEEE Trans. on Robotics, Vol.25, pp. 522-538, 2009.
- [11] N. Koizumi, T. Tsurumi, S. Warisawa, H. Hashizume, and M. Mitsuishi, “Probe positioning support utilizing shoulder model for ultrasound diagnosis,” Proc. of 2006 IEEE/RSJ Int. Conf. Intelligent Robotics and Systems, Vol.1, pp. 155-161, 2006.
- [12] N. Koizumi, J. Seo, Y. Suzuki, D. Lee, K. Ota, A. Nomiya, S. Yoshizawa, K. Yoshinaka, N. Sugita, H. Homma, Y. Matsumoto, and M. Mitsuishi, “A control framework for the non-invasive ultrasound theragnostic system,” Proc. of 2009 IEEE/RSJ Int. Conf. Intelligent Robotics and Systems, pp. 4511-4516, 2009.
- [13] N. Koizumi, J. Seo, D. Lee, T. Funamoto, A. Nomiya, K. Yoshinaka, N. Sugita, H. Homma, Y. Matsumoto, and M. Mitsuishi, “Robust kidney stone tracking for a non-Invasive ultrasound theragnostic system – Servoing performance and safety enhancement –,” Proc. of the 2011 IEEE Int. Conf. on Robotics and Automation, pp. 2443-2450, 2011.
- [14] M. Pernot et al., “3-D Real-Time Motion Correction in High-Intensity Focused Ultrasound Therapy,” Ultrasound in Med. Biol., Vol.30, No.9, pp. 1239-1249, 2004.
- [15] Y. Nakamura and H. Kishi, “Robotic Stabilization that Assists Cardiac Surgery on Beating Hearts,” Proc. of Medicine Meets Virtual Reality 2001, Ultrasound in Med. Biol., pp.355-361, 2001.
- [16] Y. Nakamura, H. Kishi, and H. Kawakami, “Heartbeat Synchronization for Robotic Cardiac Surgery,” Proc. of the 2001 IEEE Int. Conf. on Robotics and Automation, pp. 2014-2019, 2001.
- [17] A. Thankral, J.Wallace, D. Tomlin, N. Seth, and N. V. Thakor, “Surgical Motion Adaptive Robotic Technology (S.M.A.R.T): Tracking the Motion Out of Physiological Motion,” Proc. 2004 Int. Conf. Robotics and Automation, pp. 274-279, 2004.
- [18] R. Ginhoux, J. Gangloff, M. de Mathelin, L. Soler, M. M. A. Sanchez, and J. Marescaux, “Active filtering of physiological motion in robotized surgery using predictive control, model predictive control and an adaptive observer,” IEEE Trans. Robotics, Vol.21, pp. 67-79, 2005.
- [19] F. Yeung, F. Levinson, D. Fu, and K. J. Parker, “Feature-adaptive motion tracking of ultrasound image sequence using a deformable mesh,” IEEE Trans. Medical Imaging, Vol.17, pp. 945-956, 1998.
- [20] R. Mebarki, A. Krupa, and F. Chaumette, “Image moments-based ultrasound visual servoing,” Proc. 2008 Int. Conf. Robotics and Automation, Vol.1, pp. 113-119, 2008.
- [21] P. Abolmaesumi, S. E. Salcudean, W. H. Zhu, M. Sirouspour, and S. DiMaio, “Image-guided control of a robot for medical ultrasound,” IEEE Trans. Robotics and Automation, Vol.18, pp. 11-23, 2002.
- [22] A. Krupa, G. Fichtinger, and G. Hager, “Full motion tracking in ultrasound using image speckle information and visual servoing,” Proc. 2007 Int. Conf. Robotics and Automation, Vol.1, pp. 2458-2464, 2007.
- [23] F. Chaumette, “Image Moments: A general and useful set of features for visual servoing,” IEEE Trans. Robotics and Automation, Vol.20, pp. 713-723, 2004.
- [24] J. P. LaSalle, “The extent of asymptotic stability,” Proc. Nat. Acad. Sci., pp. 363-365, 1960.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.