JRM Vol.25 No.2 pp. 384-391
doi: 10.20965/jrm.2013.p0384


Ultrasonic Motor Using Two Sector-Shaped Piezoelectric Transducers for Sample Spinning in High Magnetic Field

Daisuke Yamaguchi*, Takefumi Kanda*, Koichi Suzumori*,
Kazuya Fujisawa*, Kiyonori Takegoshi**, and Takashi Mizuno***

*Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

**Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

***JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan

October 19, 2012
February 18, 2013
April 20, 2013
high magnetic field, specific environment, piezoelectric transducer, ultrasonic motor, solid-state NMR analysis
This paper presents the design, fabrication process, and evaluation of an ultrasonic motor for sample spinning in a high magnetic field of solid-state Nuclear Magnetic Resonance (NMR). To decrease effects of the magnetic field on rotation, all motor components are made of materials that have low magnetic permeability. The motor, including the sample casing, is a maximum 31 mm in diameter and 50 mm high. The motor has two sector-shaped piezoelectric transducers. One transducer generates two different vibration modes, longitudinal and flexural, when two sinusoidal voltages are applied to transducers. To confirm that transducers can be driven in a high magnetic field, the effect of the magnetic field on the transducer was evaluated. The motor was driven at a frequency of 329.0 kHz. The maximum rotation speed and starting torque were 1.50 × 103 rpm and 26 µNm when applied voltage was 40 Vp-p. The rotation speed, controlled by a proportional-integral control system, was 1.20 × 103 rpm in a 7.0-T magnetic field. The motor was also applied to the sample spinning system of a high-resolution NMR spectrometer. We succeeded in obtaining 1H-NMR signals of H2O. The motor can therefore be used for a sample spinning system in a high magnetic field.
Cite this article as:
D. Yamaguchi, T. Kanda, K. Suzumori, K. Fujisawa, K. Takegoshi, and T. Mizuno, “Ultrasonic Motor Using Two Sector-Shaped Piezoelectric Transducers for Sample Spinning in High Magnetic Field,” J. Robot. Mechatron., Vol.25 No.2, pp. 384-391, 2013.
Data files:
  1. [1] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magnetic Resonance in Medicine, Vol.42, pp. 952-962, 1992.
  2. [2] J. Giacalone and J. R. Jokipii, “The transport of cosmic rays across a turbulent magnetic field,” The Astrophysical Journal, Vol.520, pp. 204-214, 1999.
  3. [3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, Vol.81, pp. 109-162, 2009.
  4. [4] O. Nestares and D. J. Heeger, “Robust multiresolution alignment of MRI brain volumes,” Magnetic Resonance in Medicine, Vol.43, pp. 705-715, 2000.
  5. [5] M. Bregant, G. Cantatore, S. Carusotto, R. Cimino, F. D. Valle, G. D. Domenico, U. Gastaldi, M. Karuza, V. Lozza, E. Milotti, E. Polacco, G. Raiteri, G. Ruoso, E. Zavattini, and G. Zavattini, “Limits on low energy photon-photon scattering from an experiment on magnetic vacuum birefringence,” Physical Review D, Vol.78, 032006, 2008.
  6. [6] G. S. Fischer, I. Iordachita, C. Csoma, J. Tokuda, S. P. DiMaio, C. M. Tempany, N. Hata, and G. Fichtinger, “MRI-compatible pneumatic robot for transperineal prostate needle placement,” IEEE/ASME Trans. on Mechatronics, Vol.13, No.3, pp. 295-305, 2008.
  7. [7] D. Stoianovici, A. Patriciu, D. Petrisor, D.Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. on Mechatronics, Vol.12, No.1, pp. 98-106, 2007.
  8. [8] P. Latta, M. Gruwel, P. Debergue, B. Matwiy, U. S. Frankenstein, and B. Tomanek, “Convertible pneumatic actuator for magnetic resonance elastography of the brain,” Magnetic Resonance Imaging, Vol.29, pp. 147-152, 2011.
  9. [9] Y. Nishioka, K. Suzumori, T. Kanda, and S. Wakimoto, “Multiplex pneumatic control method for multi-drive system,” Sensors and Actuators A: Physical, Vol.164, pp. 88-94, 2010.
  10. [10] T. Morita, “Miniature piezoelectric motor,” Sensors and Actuators, Vol.103, No, 3, pp. 291-300, 2003.
  11. [11] H. Maeda, A. Kobayashi, T. Kanda, K. Suzumori, K. Takegoshi, and T. Mizuno, “A cylindrical ultrasonic motor for NMR sample spinning in high magnetic field,” IEEE Ultrasonics Symposium (IUS), pp. 1070-1073, 2009.
  12. [12] T. Ichihara, T. Kanda, and K. Suzumori, “Design and evaluation of low-profile micro ultrasonic motors using sector shaped piezoelectric vibrators,” IEEE Int. Conf. on Intelligent Robots and Systems, pp. 588-593, 2008.
  13. [13] S. Morikawa, S. Naka, K. Murakami, Y. Kurumi, H. Shiomi, T. Tani, H. Haque, J. Tokuda, N. Hata, and T. Inubushi, “Preliminary clinical experiences of a motorized manipulator for magnetic resonance image-guided microwave coagulation therapy of liver tumors,” The American J. of Surgery, Vol.198, pp. 340-347, 2009.
  14. [14] S. G. Turowski, M. Seshadri, M. Loecher, E. Podniesinski, J. A. Spernyak, and R. V. Mazurchuk, “Performance of a novel piezoelectric motor at 4.7 T: applications and initial tests,” Magnetic Resonance Imaging, Vol.26, pp. 426-432, 2008.
  15. [15] D. Reichert, T. Mizuno, K. Takegoshi, and T. Terao, “Narrowband Excitation of 2H Powder Pattern and Its Application to 2H 1D Exchange Sample-Turning NMR,” J. ofMagnetic Resonance, Vol.139, pp. 308-313, 1999.
  16. [16] K. Takegoshi, S. Nakamura, and T. Terao, “13C-1H dipolar-assisted rotational resonance in magnetic-angle spinning NMR,” Chemical Physics Letters, Vol.344, pp. 631-637, 2001.
  17. [17] T. Mizuno, K. Takegoshi, and T. Terao, “Switching-angle sample spinning NMR probe with a commercially available 20 kHz spinning system,” J. of Magnetic Resonance, Vol.171, pp. 15-19, 2004.
  18. [18] T. Morita, S. Takahashi, H. Asama, and T. Niino, “Rotational feedthrough using an ultrasonic motor and its performance in ultra high vacuum conditions,” Vacuum, Vol.70, pp. 53-57, 2003.
  19. [19] D. Yamaguchi, T. Kanda, and K. Suzumori, “An ultrasonic motor for cryogenic temperature using bolt-clamped Langevin-type transducer,” Sensors and Actuators A: Physical, Vol.184, pp. 134-140, 2012.
  20. [20] P. D. Hockings, J. F. Hare, and D. G. Reid, “MRI Instrumentation,” Encyclopedia of Spectroscopy and Spectrometry, pp. 1372-1380, 1999.
  21. [21] T. Kanda, Y. Matsunaga, T. Ichihara, and K. Suzumori, “A lowprofile micro ultrasonic motor utilizing sector shape piezoelectric vibrators,” ACTUATOR 2008, pp. 168-171, 2008.
  22. [22] T. Kanda, H. Maeda, K. Suzumori, and K. Fujisawa, “A low-profile micro ultrasonic motor for NMR sample spinning in high magnetic field,” 2011 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM2011), pp. 736-741, 2011.
  23. [23] T. Mizuno, K. Hioka, K. Fujioka, and T. Takegoshi, “Development of a magic-angle spinning nuclear magnetic resonance probe with a cryogenic detection system for sensitivity enhancement,” Review of Scientific Instrument, Vol.79, 044706, 2008.
  24. [24] K. Nakamura, M. Kurosawa, H. Kurebayashi, and S. Ueha, “An estimation of load characteristics of an ultrasonic motor by measuring transient responses,” IEEE Trans. on Ultrasonics, Vol.38, No.5, pp. 481-485, 1991.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2024