Paper:
Development of High Contractile Pneumatic Artificial Rubber Muscle for Power Assist Device
Daisuke Sasaki, Toshiro Noritsugu, and Masahiro Takaiwa
Graduate School of Natural Science of Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- [1] A. Chu, H. Kazerooni, and A. Zoss, “On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX),” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 4356-4363, 2005.
- [2] Y. Mori, K. Takayama, T. Zengo, and T. Nakamura, “Development of Straight Style Transfer Equipment for Lower Limbs Disabled: Verification of Basic Motion,” J. of Robotics and Mechatronics, Vol.16, No.5, pp. 456-463, 2004.
- [3] J. Nikitczuk, B. Weinberg, and C. Mavroidis, “Rehabilitative Knee Orthosis Driven by Electro-Rheological Fluid Based Actuators,” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 2294-2300, 2005.
- [4] D. Sasaki, T. Noritsugu, and M. Takaiwa, “Development of Pneumatic Power Assist Sprint “ASSIST” Operated by Human Intention,” J. of Robotics and Mechatronics, Vol.17, No.5, pp. 568-574, 2005.
- [5] H. Kobayashi, T. Siiba, and Y. Ishida, “Realization of All 7Motions for the Upper Limb by a Muscle Suit,” J. of Robotics and Mechatronics, Vol.16, No.5, pp. 504-512, 2004.
- [6] B. Verrelst et al., “ Second generation pleated artificial muscle and its robotic applications,” Advanced Robotics, Vol.20, No.7, pp. 783-805, 2006.
- [7] A. Chu, H. Kazerooni, and A. Zoss, “On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX),” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 4356-4363, 2005.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.