Paper:
Ciliary Vibration Drive Mechanism for Active Scope Cameras
Masashi Konyo*, Kazuya Isaki*, Kazunari Hatazaki*,
Satoshi Tadokoro*, and Fumiaki Takemura**
*Graduate School of Information Sciences, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
**Department of Mechanical Systems Engineering, Okinawa National College of Technology, 905 Aza Henoko, Nago, Okinawa 905-2192, Japan
- [1] S. Hirose, “Biologically Inspired Robots: Snake-like Locomotors and Manipulators,” Oxford University Press, 1993.
- [2] S.Hirose, T. Mitsui, and K. Suyama, “Design of In-pipe Inspection Vehicles for φ25, φ50, φ150 pipes,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2309-2314, 1999.
- [3] H. Kimura, S. Hirose, and K. Shimizu, “Stuck Evasion Control for Active-wheel Passive-joint Snake-like Mobile Robot ‘Genbu’,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 5087-5092, 2004.
- [4] M. Mori and S. Hirose, “Locomotion of 3D Snake-Like Robots —Shifting and Rolling Control of Active Cord Mechanism ACM-R3— ,” Journal of Robotics and Mechatronics, Vol.18, No.5, pp. 521-528, 2006.
- [5] B. Klaassen and K. L. Paap, “GMD-SNAKE2: A Snake-Like Robot Driven by Wheels and a Method for Motion Control,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3014-3019, 1999.
- [6] S. G. Roh, S. M. Ryew, and H. R. Choi, “Development of Differentially Driven Inpipe Inspection Robot for Underground Gas Pipelines,” Proc. the 32nd Int. Symposium on Robotics, pp. 165-170, 2001.
- [7] A. M. Bertetto and M. Ruggiu, “In-pipe Inch-worm Pneumatic Flexible Robot,” Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 1226-1231, 2001.
- [8] S. Wakimoto, K. Suzumori, M. Takeda, and J. Nakajima, “In-Pipe Insection Micro Robot Adaptable to Changes in Pipe Diameter,” Journal of Robotics and Mechatronics, Vol.15, No.6, pp. 609-615, 2003.
- [9] T. Hatsuzawa, M. Hayase, and O. Toshiaki, “A linear actuator based on cilia vibration,” Sensors & Actuators: A. Physical, Vol.105, No.2, pp. 183-189, 2003.
- [10] T. Fukuda, N. Mitsumoto, F. Arai, and H. Matsuura, “A study on Micro Robot (1st Report, Design, Experiment and Mathematical Model of Micro Mobile Robot),” Transactions of the Japan Society of Mechanical Engineers, Vol.59, No.562, pp. 1787-1794, 1993.
- [11] K. Ioi, “A Mobile Micro-Robot Using Centrifugal Forces,” IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 736-741, 1999.
- [12] K. Isaki, A. Niitsuma, M. Konyo, F. Takemura, and S. Tadokoro, “Development of an Active Flexible Cable Driven by Ciliary Vibration Mechanism,” Proc. 10th Int. Conf. on New Actuators, pp. 219-222, 2006.
- [13] K. Isaki, A. Niitsuma, M. Konyo, F. Takemura, and S. Tadokoro, “Development of an Active Flexible Cable by Ciliary Vibration Drive for Scope Camera,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3946-3951, 2006.
- [14] K. Hatazaki, M. Konyo, K. Isaki, S. Tadokoro, and F. Takemura, “Active Scope Camera for Urban Search and Rescue,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2596-2602, 2007.
- [15] B. Armstrong-Helouvry, P. Dupont, and C. C. De Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, 30(7), pp. 1083-1138, 1994.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2008 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.