Paper:
Bio-Inspired Real-Time Robot Vision for Collision Avoidance
Hirotsugu Okuno and Tetsuya Yagi
Division of Electrical, Electronic and Information Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- [1] Y. Wang and B. J. Frost, “Time to collision is signalled by neurons in the nucleus rotundus of pigeons,” Nature, 356, pp. 236-238, 1992.
- [2] H. Sun and B. J. Frost, “Computation of different optical variables of looming objects in pigeon nucleus,” Nat. Neurosci., Vol.1, pp. 296-303, 1998.
- [3] F. C. Rind and P. J. Simmons, “Seeing what is coming: building collision-sensitive neurons,” Trends Neuroscience, 22(5), pp. 215-220, May 1999.
- [4] W. Reichardt and T. Poggio, “Visual control of orientation behaviour in the fly Part I,” Q. Rev. Biophys., Vol.9, pp. 311-375, 1976.
- [5] T. Poggio and W. Reichardt, “Visual control of orientation behaviour in the fly Part II,” Q. Rev. Biophys., Vol.9, pp. 377-438, 1976.
- [6] M. Egelhaaf and A. Borst, “A Look into the Cockpit of the Fly: Visual Orientation, Algorithms, and Identified Neuron,” J. Neurosci., Vol.13, pp. 4563-4574, 1993.
- [7] N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot vision,” Philos. Trans. Roy. Soc. Lond. B, Vol.337, pp. 283-294, 1992.
- [8] N. Franceschini, “Visual guidance based on optic flow: a biorobotic approach,” J. Physiol. Paris, Vol.98, pp. 281-292, 2004.
- [9] B. Webb, “Robots in invertebrate neuroscience,” Nature, Vol.417, pp. 359-363, 2002.
- [10] N. Hatsopoulus, F. Gabbiani, and G. Laurent, “Elementary computation of object approach by a wide-field visual neuron,” Science, Vol.270, pp. 1000-1003, 1995.
- [11] F. C. Rind, “Intracellular characterization of neurons in the locust brain signalling impending collision,” J. Neurophysiol., Vol.75, pp. 986-995, 1996.
- [12] M. O’Shea and J. L. Williams, “The anatomy and output connections of a locust visual interneuron: the lobula giant movement detector (LGMD) neuron,” J. Comp. Physiol., Vol.91, pp. 257-266, 1974.
- [13] F. C. Rind and D. I. Bramwell, “Neural network based on the input organization of an identified neuron signaling impending collision,” J. Neurophysiol., Vol.75, pp. 967-984, 1996.
- [14] M. Blanchard, F. C. Rind, and P. F. M. J. Verschure, “Collision avoidance using a model of the locust LGMD neuron,” Robot. Auton. Sys., Vol.30, pp. 17-38, 2000.
- [15] S. Bermudez and P. Verschure, “A Collision Avoidance Model Based on the Lobula Giant Movement Detector (LGMD) neuron of the Locust,” Proc. of the IJCNN, Budapest, 2004.
- [16] S. Yue, F. C. Rind, M. S. Keil, J. Cuadri, and R. Stafford, “A bioinspired visual collision detection mechanism for cars: Optimisation of a model of a locust neuron to a novel environment,” Neuro-Computing, Vol.69, pp. 1591-1598, 2006.
- [17] J. Cuadri, G. Linan, R. Stafford, M. S. Keil, and E. Roca, “A bioinspired collision detection algorithm for VLSI implementation,” Proc. of the SPIE Conf. on Bioengineered and Bioinspired System, 2005.
- [18] R. Laviana, L. Carranza, S. Vargas, G. Liñán, and E. Roca, “A Bioinspired Vision Chip Architecture for Collision Detection in Automotive Applications,” Proc. of the SPIE Conf. on Bioengineered and Bioinspired System, 2005.
- [19] G. Indiveri and R. Douglas, “Neuromorphic Vision Sensors,” Science, Vol.288, pp. 1189-1190, 2000.
- [20] R. Takami, K. Shimonomura, S. Kameda, and T. Yagi, “A novel preprocessing vision system employing neuromorphic 100x100 pixel silicon retina,” Proc. 2005 IEEE Intl. Symp. on Circuits and Systems, pp. 2771-2774, Kobe, Japan, 2005.
- [21] S. Kameda and T. Yagi, “An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina,” IEEE Trans. on Neural Networks, Vol.14, pp. 1405-1412, 2003.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2008 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.