JRM Vol.19 No.5 pp. 500-505
doi: 10.20965/jrm.2007.p0500


Grand Espoir: Robotics in Regenerative Medicine

Masayuki Yamato*, Ryo Takagi*, Makoto Kondo**,
Daisuke Murakami**, Takeshi Ohki*,***, Hidekazu Sekine*,
Tatsuya Shimizu*, Jun Kobayashi*, Yoshikatsu Akiyama*,
Hideo Namiki**, Masakazu Yamamoto***, and Teruo Okano*

*Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan

**Graduate School of Science and Engineering, Waseda University, Tokyo, Japan

***Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan

May 18, 2007
May 30, 2007
October 20, 2007
tissue engineering, stem cells, regulatory affairs, validation

Here, we overlook the brief history of regenerative medicine, and summarize the expectation to breakthroughs achieved by robotics in the field. One expected application of robotics is an automatic cell culture system, which can dramatically reduce the cost for manufacturing bioengineered tissues conventionally requiring GMP (Good Manufacturing Practice) facility for Cell Processing Center. The other is a robotic surgery system for less invasive transplantation of cells and fabricated tissues. To show the feasibility of robotic surgery-assisted transplantation, we have shown the success of cell sheet transplantation to luminal surface of living canine esophagus by endoscopy. Thus, the contribution of robotics to regenerative medicine has been wanted to realize the greatest success of tissue engineering and cell-based medicine.

Cite this article as:
Masayuki Yamato, Ryo Takagi, Makoto Kondo,
Daisuke Murakami, Takeshi Ohki, Hidekazu Sekine,
Tatsuya Shimizu, Jun Kobayashi, Yoshikatsu Akiyama,
Hideo Namiki, Masakazu Yamamoto, and Teruo Okano, “Grand Espoir: Robotics in Regenerative Medicine,” J. Robot. Mechatron., Vol.19, No.5, pp. 500-505, 2007.
Data files:
  1. [1] K. Ohashi, F. Park, and M. A. Kay, “Hepatocyte transplantation: clinical and experimental application,” J. Mol. Med., Vol.79(11), pp. 617-630, 2001.
  2. [2] R. Drucker-Colin and L. Verdugo-Diaz, “Cell transplantation for Parkinson’s disease: present status,” Cell Mol. Neurobiol, Vol.24(3), pp. 301-316, 2004.
  3. [3] D. Orlic et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, Vol.410(6829), pp. 701-705, 2001.
  4. [4] K. Lunde et al., “Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction,” N. Engl. J. Med., Vol.355(12) pp. 1199-1209, 2006.
  5. [5] V. Schachinger et al., “Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction,” N. Engl. J. Med., Vol.355(12), pp. 1210-1221, 2006.
  6. [6] B. Assmus et al., “Transcoronary transplantation of progenitor cells after myocardial infarction,” N. Engl. J. Med., Vol.355(12), pp. 1222-1232, 2006.
  7. [7] T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res., Vol.90(3), e40, 2002.
  8. [8] J. P. Vacanti, “Beyond transplantation,” Third annual Samuel Jason Mixter lecture, Arch. Surg., Vol.123(5), pp. 545-549, 1988.
  9. [9] J. P. Vacanti, M. A. Morse, W. M. Saltzman, A. J. Domb, A. Perez-Atayde, and R. Langer, “Selective cell transplantation using bioabsorbable artificial polymers as matrices,” J. Pediatr. Surg., Vol.23(1 Pt 2), pp. 3-9, 1988.
  10. [10] J. F. Hansbrough, D. W. Mozingo, G. P. Kealey, M. Davis, A. Gidner, and G. D. Gentzkow, “Clinical trials of a biosynthetic temporary skin replacement, Dermagraft-Transitional Covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds,” J. Burn. Care. Rehabil., Vol.18(1 Pt 1), pp. 43-51, 1997.
  11. [11] T. Shin’oka, Y. Imai, and Y. Ikada, “Transplantation of a tissueengineered pulmonary artery,” N. Engl. J. Med., Vol.344, pp. 532-533, 2001.
  12. [12] A. Atala, S. B. Bauer S. Soker, J. J. Yoo, and A. B. Retik, “Tissueengineered autologous bladders for patients needing cystoplasty,” Lancet, Vol.367(9518), pp. 1241-1246, 2006.
  13. [13] Y. Cao, J. P. Vacanti, K. T. Paige, J. Upton, and C. A. Vacanti, “Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear,” Plast. Reconstr. Surg., Vol.100(2), pp. 297-302, 1997.
  14. [14] W. H. Eaglstein, and V. Falanga, “Tissue engineering and the development of Apligraf, a human skin equivalent,” Clin. Ther., Vol.19(5), pp. 894-905, 1997.
  15. [15] G. Pellegrini, R. Ranno, G. Stracuzzi, S. Bondanza, L. Guerra, G. Zambruno, G. Micali, and M. De Luca, “The control of epidermal stem cells (holoclones) in the treatment of massive fullthickness burns with autologous keratinocytes cultured on fibrin,” Transplantation, Vol.68(6), pp. 868-879, 1999.
  16. [16] P. Rama, S. Bonini, A. Lambiase, O. Golisano, P. Paterna, M. De Luca, and G. Pellegrini, “Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency,” Transplantation, Vol.72(9), pp. 1478-1485, 2001.
  17. [17] T. Nakamura, N. Koizumi, M. Tsuzuki, K. Inoki, Y. Sano, C. Sotozono, and S. Kinoshita, “Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease,” Cornea, Vol.22(1), pp. 70-71, 2003.
  18. [18] I. R. Schwab, “Cultured corneal epithelia for ocular surface disease,” Trans. Am. Ophthalmol. Soc., Vol.97, pp. 891-986, 1999.
  19. [19] C. A. Vacanti, L. J. Bonassar, M. P. Vacanti, and J. Shufflebarger, “Replacement of an avulsed phalanx with tissue-engineered bone,” N. Engl. J. Med., Vol.344(20), pp. 1511-1514, 2001.
  20. [20] G. G. Gallico 3rd, N. E. O’Connor, C. C. Compton, O. Kehinde, and H. Green, “Permanent coverage of large burn wounds with autologous cultured human epithelium,” N. Engl. J. Med., Vol.311(7), pp. 448-451, 1984.
  21. [21] J. G. Rheinwald and H. Green, “Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells,” Cell, Vol.6(3), pp. 331-343, 1975.
  22. [22] H. Green, O. Kehinde, and J. Thomas, “Growth of cultured human epidermal cells into multiple epithelia suitable for grafting,” Proc. of Natl. Acad. Sci. U.S.A., Vol.76(11), pp. 5665-5668, 1979.
  23. [23] G. G. Gallico 3rd, N. E. O’Connor, C. C. Compton, J. P. Remensnyder, O. Kehinde, and H. Green, “Cultured epithelial autografts for giant congenital nevi,” Plast. Reconstr. Surg., Vol.84(1), pp. 1-9 1989.
  24. [24] C. M. Counter, W. Press, and C. C. Compton, “Telomere shortening in cultured autografts of patients with burns,” Lancet, Vol.361(9366), pp. 1345-1346, 2003.
  25. [25] G. Romagnoli, M. De Luca, F. Faranda, R. Bandelloni, A. Franzi, F. Cataliotti, and R. Cancedda, “Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium,” N. Engl. J. Med., Vol.323, pp. 527-530, 1990.
  26. [26] G. Pellegrini, C. E. Traverso, A. T. Franzi, M. Zingirian, R. Cancedda, and M. De Luca, “Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium,” Lancet, Vol.349(9057), pp. 990-993, 1997.
  27. [27] K. Nishida et al., “Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium,” N. Engl. J. Med., Vol.351(12), pp. 1187-1196, 2004.
  28. [28] F.Mavilio et al., “Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells,” Nat. Med., Vol.12(12), pp. 1397-1402, 2006.
  29. [29] J. Yang, M. Yamato, and T. Okano, “Cell-sheet engineering using intelligent surfaces,” MRS Bulletin, Vol.30, pp. 189-193, 2005.
  30. [30] T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Cell sheet engineering for myocardial tissue reconstruction,” Biomaterials, Vol.24(13), pp. 2309-2316, 2003.
  31. [31] T. Shimizu, H. Sekine, J. Yang, Y. Isoi, M. Yamato, A. Kikuchi, E. Kobayashi, and T. Okano, “Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues,” Faseb. J., 2006.
  32. [32] V. Falk, T. Walther, R. Autschbach, A. Diegeler, R. Battellini, a nd F. W. Mohr, “Robot-assisted minimally invasive solo mitral valve operation,” J. Thorac. Cardiovasc. Surg., Vol.115(2), pp. 470-471, 1998.
  33. [33] V. Falk, R. Autschbach, R. Krakor, T. Walther, A. Diegeler, J. F. Onnasch, W. R. Chitwood Jr., and F. W. Mohr, “Computer-enhanced mitral valve surgery: toward a total endoscopic procedure,” Semin. Thorac. Cardiovasc. Surg., Vol.11(3), pp. 244-249, 1999.
  34. [34] H. Reichenspurner, R. J. Damiano, M. Mack, D. H. Boehm, H. Gulbins, C. Detter, B. Meiser, R. Ellgass, and B. Reichart, “Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting,” J. Thorac. Cardiovasc. Surg., Vol.118(1), pp. 11-16, 1999.
  35. [35] A. Carpentier, D. Loulmet, B. Aupecle, A. Berrebi, and J. Relland, “Computer-assisted cardiac surgery,” Lancet, Vol.353(9150), pp. 379-380, 1999.
  36. [36] D. Loulmet, A. Carpentier, N. d’Attellis, A. Berrebi, C. Cardon, O. Ponzio, B. Aupecle, and J. Y. Relland, “Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments,” J. Thorac. Cardiovasc. Surg., Vol.118(1), pp. 4-10, 1999.
  37. [37] V. Falk, A. Diegeler, T. Walther, J. Banusch, J. Brucerius, J. Raumans, R. Autschbach, and F. W. Mohr, “Total endoscopic computer enhanced coronary artery bypass grafting,” Eur. J. Cardiothorac. Surg., Vol.17(1), pp. 38-45, 2000.
  38. [38] T. Ohki, M. Yamato, D. Murakami, R. Takagi, J. Yang, H. Namiki, T. Okano, and K. Takasaki, “Treatment of oesophageal ulcerations using endoscopic transplantation of tissue engineered autologous oral mucosal epithelial cell sheets in a canine model,” Gut, 2006.
  39. [39] T. Sumide et al., “Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces,” Faseb. J., Vol.20(2), pp. 392-394, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021