single-rb.php

JRM Vol.19 No.3 pp. 272-280
doi: 10.20965/jrm.2007.p0272
(2007)

Paper:

Experimental Stiffness Measurement of WL-16RII Biped Walking Vehicle During Walking Operation

Yusuke Sugahara*, Giuseppe Carbone**, Kenji Hashimoto***,
Marco Ceccarelli**, Hun-Ok Lim*,****,
and Atsuo Takanishi*,***,*****

*Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

**Laboratory of Robotics and Mechatronics, DiMSAT, University of Cassino, Via Di Biasio 43, 03043 Cassino (FR), Italy

***Graduate School of Science and Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

****Department of Mechanical Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan

*****School of Science and Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received:
April 26, 2007
Accepted:
April 26, 2007
Published:
June 20, 2007
Keywords:
walking robots, experimental robotics, biped robots, parallel mechanisms, stiffness analysis
Abstract

This paper describes an experimental method for evaluating the stiffness of a biped walking robot. A reliable procedure is proposed as based on a simplified version of Milli-CaTraSys (Milli Cassino Tracking System) with three wire encoders and two six-axis force-torque sensors. This measures both applied wrench and resulting compliant displacements. Experiments conducted on a prototype of the biped walking vehicle WL-16RII (Waseda Leg – No. 16 Refined II) under different dynamic conditions provided useful information for both design and control.

Cite this article as:
Yusuke Sugahara, Giuseppe Carbone, Kenji Hashimoto,
Marco Ceccarelli, Hun-Ok Lim, and
and Atsuo Takanishi, “Experimental Stiffness Measurement of WL-16RII Biped Walking Vehicle During Walking Operation,” J. Robot. Mechatron., Vol.19, No.3, pp. 272-280, 2007.
Data files:
References
  1. [1] Takanishi Laboratory webpage,
    http://www.takanishi.mech.waseda.ac.jp/ , 2006.
  2. [2] Y. Sugahara, T. Endo, H.-O. Lim, and A. Takanishi, “Control and Experiments of a Multi-purpose Bipedal Locomotor with Parallel Mechanism,” Proc. of the IEEE ICRA 2003, pp. 4342-4347, Taipei, Taiwan, September, 2003.
  3. [3] Y. Sugahara, T. Hosobata, Y. Mikuriya, H. Sunazuka, H. O. Lim, and A. Takanishi, “Realization of Dynamic Walking by a Biped Locomotor Carrying a Human,” Proc. of the 9th RSJ/JSME/SICE Robotics Symposia, pp. 96-101, Okinawa, Japan, March 8-9, 2004 (in Japanese).
  4. [4] Y. Sugahara, T. Hosobata, Y. Mikuriya, H. Sunazuka, H.-O. Lim, and A. Takanishi, “Realization of Dynamic Human-Carrying Walking by a Biped Locomotor,” Proc. of the IEEE ICRA 2004, pp. 3055-3060, New Orleans, USA, April, 2004.
  5. [5] Y. Sugahara, Y. Mikuriya, T. Hosobata, H. Sunazuka, M. Kawase, K. Hashimoto, H.-O. Lim, and A. Takanishi, “Support Torque Reduction Mechanism for Biped Locomotor with Parallel Mechanism,” Proc. of the IEEE/RSJ IROS 2004, pp. 3213-3218, Sendai, Japan, October, 2004.
  6. [6] Y. Sugahara, A. Ohta, K. Hashimoto, H. Sunazuka, M. Kawase, C. Tanaka, H.-O. Lim, and A. Takanishi, “Walking Up and Down Stairs Carrying a Human by a Biped Locomotor with Parallel Mechanism,” Proc. of the IEEE/RSJ IROS 2005, pp. 3425-3430, Edmonton, Canada, August, 2005.
  7. [7] K. Takita, R. Hodoshima, and S. Hirose, “Fundamental mechanism of dinosaur-like robot TITRUS-II utilizing coupled drive,” Proc. of the IEEE/RSJ IROS 2000, pp. 1670-1675, Takamatsu, Japan, October, 2000.
  8. [8] Y. Ota, T. Tamaki, K. Yoneda, and S. Hirose, “Development of walking manipulator with versatile locomotion,” Proc. of the IEEE ICRA 2003, pp. 477-483.
  9. [9] Y. Konuma and S. Hirose, “Development of the stair-climbing biped robot Zero Walker-1,” Proc. of the 19th Annual Conf. of the RSJ, pp. 851-852, 2001 (in Japanese).
  10. [10] Y. Konuma and S. Hirose, “Development of 2 types of leg-wheel vehicle with the function of stable stair-climbing,” Proc. of the 8th RSJ/JSME/SICE Robotics Symposia, pp. 160-167, Shizuoka, Japan, March, 2003 (in Japanese).
  11. [11] Y. Takeda, M. Higuchi, and H. Funabashi, “Development of a walking chair (Fundamental investigations for realizing a practical walking chair),” Proc. of the CLAWAR2001, pp. 1037-1044, Karlsruhe, Germany, September, 2001.
  12. [12] T. Kamada, “My Agent: A Practical Personal Assistant,” Proc. of the JSME ROBOMEC ’94, pp. 1107-1112, Kobe, Japan, 1994 (in Japanese).
  13. [13] http://www.independencenow.com/ibot/index.html.
  14. [14] http://www.toyota.co.jp/en/special/robot/index.html ,
    March 11, 2004.
  15. [15] http://www.toyota.co.jp/en/news/04/1203_1d.html ,
    December 3, 2004.
  16. [16] J. Duffy, “Statics and kinematics with applications to robotics,” Cambridge University Press, Cambridge, pp. 153-169, 1996.
  17. [17] J. P. Merlet, “Parallel Robots,” Springer Verlag, Dordrecht, 2006.
  18. [18] L. W. Tsai, “Robot analysis: the mechanics of serial and parallel manipulators,” John Wiley & Sons, New York, pp. 260-297, 1999.
  19. [19] E. I. Rivin, “Stiffness and damping in mechanical design,” Marcel Dekker Inc., New York, 1999.
  20. [20] M. Ceccarelli, “Fundamentals of Mechanics of Robotic Manipulation,” Kluwer Academic Publishers, Dordrecht, 2004.
  21. [21] G. Carbone, “Stiffness evaluation of multibody robotic systems,” Ph.D. dissertation, LARM, University of Cassino, Cassino, 2003.
  22. [22] R. N. Vaishnav and E. B. Magrab, “A general procedure to evaluate robot positioning errors,” International J. of Robotics Research, Vol.6, No.1, pp. 59-74, 1987.
  23. [23] H.-O. Lim, S. A. Setiawan, and A. Takanishi, “Balance and Impedance Control for Biped Humanoid Robot Locomotion,” Proc. of IEEE/RSJ IROS 2001, Maui, pp. 494-499, 2001.
  24. [24] M. Xie, “Flexible Multibody System Dynamics: Theory and Applications,” Taylor & Francis, Bristol, 1994.
  25. [25] A. A. Shabana, “Dynamics of Multibody Systems,” Cambridge University Press, Cambridge, 2005.
  26. [26] C. Gosselin, “Stiffness mapping for parallel manipulators,” IEEE Trans. on Robotics and Automation, Vol.6, No.3, pp. 377-382, 1990.
  27. [27] G. Alici and B. Shirinzadeh, “Exact stiffness analysis and mapping for a 3-SPS+S parallel manipulator,” Proc. of the AUTOMATION 2003, Taiwan, paper F120, 2003.
  28. [28] M. Ceccarelli and G. Carbone, “A stiffness analysis for CaPaMan (Cassino Parallel Manipulator),” Mechanism and Machine Theory, Vol.37, No.5, pp. 427-439, 2002.
  29. [29] G. Carbone, Y. Sugahara, H. O. Lim, A. Takanishi, and M. Ceccarelli, “Stiffness Performances Estimation for Biped Locomotor WL-15,” IEEE/ASME AIM 03, Kobe, pp. 956-961, 2003.
  30. [30] M. Ceccarelli and G. Carbone, “Numerical and experimental analysis of the stiffness performance of parallel manipulators,” 2nd International Colloquium Collaborative Research Centre 562, Braunschweig, pp. 21-35, 2005.
  31. [31] H. Y. Kim and D. A. Streit, “Configuration dependent stiffness of the Puma 560 manipulator: analytical and experimental results,” Mechanism and Machine Theory, Vol.30, No.8, pp. 1269-1277, 1995.
  32. [32] Italian National Institute for Standards (UNI), “Manipulating Industrial Robots: Performance Criteria and Related Test Methods,” UNI EN 29283 (= ISO 9283), Milan, 1995.
  33. [33] American National Standards Institute (ANSI), “American National Standard for Industrial Robots and Robot Systems: Point-to-Point and Static Performance Characteristics – Evaluation,” ANSI/RIA 15.05-1-1990, New York, 1990.
  34. [34] H. Van Brussel, “Evaluations and Testing of Robots,” Annals of CIRP, Vol.32, pp. 657-664, 1990.
  35. [35] C. Dorf (Ed.), “International Encyclopedia of Robotics: Applications and Automation,” New York: Wiley, Vol.3, 1988.
  36. [36] G. Carbone and M. Ceccarelli, “A Procedure for Experimental Evaluation of Cartesian Stiffness Matrix,” Proc. of the CISM-IFToMM ROMANSY 2004, Montreal, CD Proceedings, paper Rom04-24, 2004.
  37. [37] LARM Laboratory Webpage,
    http://webuser.unicas.it/weblarm/larmindex.htm , 2006.
  38. [38] G. Carbone and M. Ceccarelli, “A Comparison of Indices for Stiffness Performance Evaluation,” 12th World Congress in Mechanism and Machine Science IFToMM’07, Besanc, on, paper No.831, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 22, 2021