Paper:
Trajectory Planning of Motile Cell for Microrobotic Applications
Naoko Ogawa*, Hiromasa Oku*, Koichi Hashimoto**,
and Masatoshi Ishikawa*
*Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
**Graduate School of Information Sciences, Tohoku University, 6-6-01 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
- [1] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Microrobotic visual control of motile cells using high-speed tracking system,” IEEE Trans. Robotics, Vol.21, No.4, pp. 704-712, Aug. 2005.
- [2] A. Davies, N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Visualization and estimation of contact stimuli using living microorganisms,” in Proc. 2006 IEEE Int. Conf. Robotics & Biomimetics (ROBIO 2006), pp. 445-450, Dec. 2006.
- [3] R. S. Fearing, “Control of a micro-organism as a prototype microrobot,” in Proc. 2nd Int. Symp. Micromachines and Human Sciences, Oct. 1991.
- [4] A. Itoh, “Motion control of protozoa for bio MEMS,” IEEE/ASME Trans. Mechatronics, Vol.5, No.2, pp. 181-188, Jun. 2000.
- [5] J. Yamane, N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “A current controlled electrostimulation device for the motion control of Paramecia,” in Proc. 2004 JSME Conference on Robotics & Mechatronics (Robomec’04), Jun. 2004, pp. 1A1-H-28 (in Japanese).
- [6] K. Takahashi, N. Ogawa, H. Oku, and K. Hashimoto, “Organized motion control of a lot of microorganisms using visual feedback,” in Proc. 2006 IEEE Int. Conf. Robotics & Automation (ICRA2006), May 2006, pp. 1408-1413.
- [7] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “A physical model for galvanotaxis of paramecium cell,” J. Theoretical Biology, Vol.242, No.2, pp. 314-328, Sep. 2006.
- [8] R. S. Muller, “MEMS: Quo Vadis in Century XXI?” Microelectronic Engineering, Vol.53, pp. 47-54, 2000.
- [9] S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha, and W. Smith-Spencer, “Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes,” Chemical Reviews, Vol.100, No.7, pp. 2705-2738, Jun. 2000.
- [10] F. Arai, “Synchronized laser micromanipulation by high speed laser scanning –dancing yeasts–,” in Video Proc. 2003 IEEE Int. Conf. Robotics & Automation (ICRA2003), Sep. 2003.
- [11] Y. Naitoh and K. Sugino, “Ciliary movement and its control in Paramecium,” J. Protozool., Vol.31, No.1, pp. 31-40, 1984.
- [12] H. Machemer and J. de Peyer, “Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated Protozoa,” Verhandlungen der Deutschen Zoologischen Gesellschaft, pp. 86-110, 1977.
- [13] K. Ludloff, “Untersuchungen über den Galvanotropismus,” Archiv fur die Gesamte Physiologie, Vol.59, pp. 525-554, 1895.
- [14] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Single-cell level continuous observation of microorganism galvanotaxis using high-speed vision,” in Proc. 2004 IEEE Int. Symp. Biomedical Imaging (ISBI 2004), Apr. 2004, pp. 1331-1334.
- [15] B. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory, pp. 181-191, Jun. 1982.
- [16] M. Aicardi, G. Cannata, G. Casalino, and G. Indiveri, “Guidance of 3D underwater non-holonomic vehicle via projection on holonomic solutions,” in Proc. Symposium on Underwater Robotic Technology (SURT 2000), World Automation Congress (WAC 2000), Jun. 2000.
- [17] C. Canudas de Wit, A. D. NDoudi-Likoho, and A. Micaelli, “Feedback control for a train-like vehicle,” in Proc. 1994 IEEE Int. Conf. Robotics and Automation (ICRA 1994), May 1994, pp. 14-19.
- [18] O. J. Sφrdalen and O. Egeland, “Exponential stabilization of nonholonomic chained systems,” IEEE Trans. Automatic Control, Vol.40, No.1, pp. 35-49, Jan. 1995.
- [19] Y. Nakamura and R. Mukherjee, “Nonholonomic path planning of space robots via a bidirectional approach,” IEEE Trans. Robotics and Automation, Vol.7, No.4, pp. 500-514, Aug. 1991.
- [20] R. T. M’Closkey and R. M. Murray, “Exponential stabilization of driftless nonlinear control systems using homogeneous feedback,” IEEE Trans. Automatic Control, Vol.42, No.5, pp. 614-628, May 1997.
- [21] J.-M. Godhavn and O. Egeland, “A Lyapunov approach to exponential stabilization of nonholonomic systems in power form,” IEEE Trans. Automatic Control, Vol.42, No.7, pp. 1028-1032, Jul. 1997.
- [22] K. Tsuchiya, T. Urakubo, and K. Tsujita, “Motion control of a nonholonomic system based on the Lyapunov control method,” J. Guidance, Control, and Dynamics, Vol.25, No.2, pp. 285-290, 2002.
- [23] H. S. Jennings, “Behavior of the Lower Organisms,” Columbia University Press, 1923.
- [24] T. Kamada, “Polar effect of electric current on the ciliary movements of Paramecium,” J. the Faculty of Science, Imperial University of Tokyo, Sect. IV, Zoology, Vol.2, pp. 285-298, 1931.
- [25] H. Oku, N. Ogawa, K. Hashimoto, and M. Ishikawa, “Two-dimensional tracking of a motile micro-organism allowing highresolution observation with various imaging techniques,” Rev. Scientific Instruments, Vol.76, No.3, Mar. 2005.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2007 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.