single-rb.php

JRM Vol.19 No.2 pp. 190-197
doi: 10.20965/jrm.2007.p0190
(2007)

Paper:

Trajectory Planning of Motile Cell for Microrobotic Applications

Naoko Ogawa*, Hiromasa Oku*, Koichi Hashimoto**,
and Masatoshi Ishikawa*

*Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

**Graduate School of Information Sciences, Tohoku University, 6-6-01 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan

Received:
October 18, 2006
Accepted:
February 19, 2007
Published:
April 20, 2007
Keywords:
Paramecium, micromachine, galvanotaxis, trajectory planning, Lyapunov-like method
Abstract
Our goal is to use motile microorganisms as smart microscale robots for a variety of applications. As a first step, we have achieved microrobotic control of Paramecium cell movement using galvanotaxis (locomotor response to electrical stimulus). Previous studies based on simple empirical rules that did not consider cell dynamics had only limited control. To control cells more precisely as microrobots, we must deal with Paramecium cells in the standard robotics framework. This paper is, to our knowledge, the first attempt in trajectory planning of Paramecium cells under an electric field using a dynamics model for microrobotic applications. Based on the original dynamics model, we propose trajectory planning for cells using a common well-known Lyapunov-like approach and generate cusp-free trajectories. We discuss how to generate stable streamlined trajectories for living cells in a step toward actual control. Numerical experiments demonstrate the successful stable convergence of cell trajectories to the desired location and attitude, which should prove useful in the advanced guidance of cells.
Cite this article as:
N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Trajectory Planning of Motile Cell for Microrobotic Applications,” J. Robot. Mechatron., Vol.19 No.2, pp. 190-197, 2007.
Data files:
References
  1. [1] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Microrobotic visual control of motile cells using high-speed tracking system,” IEEE Trans. Robotics, Vol.21, No.4, pp. 704-712, Aug. 2005.
  2. [2] A. Davies, N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Visualization and estimation of contact stimuli using living microorganisms,” in Proc. 2006 IEEE Int. Conf. Robotics & Biomimetics (ROBIO 2006), pp. 445-450, Dec. 2006.
  3. [3] R. S. Fearing, “Control of a micro-organism as a prototype microrobot,” in Proc. 2nd Int. Symp. Micromachines and Human Sciences, Oct. 1991.
  4. [4] A. Itoh, “Motion control of protozoa for bio MEMS,” IEEE/ASME Trans. Mechatronics, Vol.5, No.2, pp. 181-188, Jun. 2000.
  5. [5] J. Yamane, N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “A current controlled electrostimulation device for the motion control of Paramecia,” in Proc. 2004 JSME Conference on Robotics & Mechatronics (Robomec’04), Jun. 2004, pp. 1A1-H-28 (in Japanese).
  6. [6] K. Takahashi, N. Ogawa, H. Oku, and K. Hashimoto, “Organized motion control of a lot of microorganisms using visual feedback,” in Proc. 2006 IEEE Int. Conf. Robotics & Automation (ICRA2006), May 2006, pp. 1408-1413.
  7. [7] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “A physical model for galvanotaxis of paramecium cell,” J. Theoretical Biology, Vol.242, No.2, pp. 314-328, Sep. 2006.
  8. [8] R. S. Muller, “MEMS: Quo Vadis in Century XXI?” Microelectronic Engineering, Vol.53, pp. 47-54, 2000.
  9. [9] S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha, and W. Smith-Spencer, “Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes,” Chemical Reviews, Vol.100, No.7, pp. 2705-2738, Jun. 2000.
  10. [10] F. Arai, “Synchronized laser micromanipulation by high speed laser scanning –dancing yeasts–,” in Video Proc. 2003 IEEE Int. Conf. Robotics & Automation (ICRA2003), Sep. 2003.
  11. [11] Y. Naitoh and K. Sugino, “Ciliary movement and its control in Paramecium,” J. Protozool., Vol.31, No.1, pp. 31-40, 1984.
  12. [12] H. Machemer and J. de Peyer, “Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated Protozoa,” Verhandlungen der Deutschen Zoologischen Gesellschaft, pp. 86-110, 1977.
  13. [13] K. Ludloff, “Untersuchungen über den Galvanotropismus,” Archiv fur die Gesamte Physiologie, Vol.59, pp. 525-554, 1895.
  14. [14] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa, “Single-cell level continuous observation of microorganism galvanotaxis using high-speed vision,” in Proc. 2004 IEEE Int. Symp. Biomedical Imaging (ISBI 2004), Apr. 2004, pp. 1331-1334.
  15. [15] B. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory, pp. 181-191, Jun. 1982.
  16. [16] M. Aicardi, G. Cannata, G. Casalino, and G. Indiveri, “Guidance of 3D underwater non-holonomic vehicle via projection on holonomic solutions,” in Proc. Symposium on Underwater Robotic Technology (SURT 2000), World Automation Congress (WAC 2000), Jun. 2000.
  17. [17] C. Canudas de Wit, A. D. NDoudi-Likoho, and A. Micaelli, “Feedback control for a train-like vehicle,” in Proc. 1994 IEEE Int. Conf. Robotics and Automation (ICRA 1994), May 1994, pp. 14-19.
  18. [18] O. J. Sφrdalen and O. Egeland, “Exponential stabilization of nonholonomic chained systems,” IEEE Trans. Automatic Control, Vol.40, No.1, pp. 35-49, Jan. 1995.
  19. [19] Y. Nakamura and R. Mukherjee, “Nonholonomic path planning of space robots via a bidirectional approach,” IEEE Trans. Robotics and Automation, Vol.7, No.4, pp. 500-514, Aug. 1991.
  20. [20] R. T. M’Closkey and R. M. Murray, “Exponential stabilization of driftless nonlinear control systems using homogeneous feedback,” IEEE Trans. Automatic Control, Vol.42, No.5, pp. 614-628, May 1997.
  21. [21] J.-M. Godhavn and O. Egeland, “A Lyapunov approach to exponential stabilization of nonholonomic systems in power form,” IEEE Trans. Automatic Control, Vol.42, No.7, pp. 1028-1032, Jul. 1997.
  22. [22] K. Tsuchiya, T. Urakubo, and K. Tsujita, “Motion control of a nonholonomic system based on the Lyapunov control method,” J. Guidance, Control, and Dynamics, Vol.25, No.2, pp. 285-290, 2002.
  23. [23] H. S. Jennings, “Behavior of the Lower Organisms,” Columbia University Press, 1923.
  24. [24] T. Kamada, “Polar effect of electric current on the ciliary movements of Paramecium,” J. the Faculty of Science, Imperial University of Tokyo, Sect. IV, Zoology, Vol.2, pp. 285-298, 1931.
  25. [25] H. Oku, N. Ogawa, K. Hashimoto, and M. Ishikawa, “Two-dimensional tracking of a motile micro-organism allowing highresolution observation with various imaging techniques,” Rev. Scientific Instruments, Vol.76, No.3, Mar. 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 11, 2024