Paper:
Motion Control of Ultra-High-Speed Manipulator with a Flexible Link Based on Dynamically Coupled Driving
Tomoari Maruyama, Chunquan Xu, Aiguo Ming,
and Makoto Shimojo
Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
- [1] N. Y. Shimon, “Handbook of industrial robotics,” 2nd ed., New York: John Wiley & Sons, 1999.
- [2] H. Asada and J.-J. E. Slotine, “Robot analysis and control,” New York: John Wiley & Sons, p. 9, 1986.
- [3] M. Vukobratovich, N. Kirchanskiy, and T. Petrovich, “The design of high-speed robot regulators based on pipeline processors,” Int. J. computer and systems sciences, Vol.31, No.6, pp. 125-133, 1993.
- [4] F. Pierrot, P. Frasisse, X. Delebarre, and P. Dauchez, “Highspeed robotics-A competely parallel system,” Rairo-Automatique-Productique Informatique Industrielle-Automatic Control Production Systems, Vol.26, No.1, pp. 3-14, 1992.
- [5] A. Ming and T. Higuchi, “Study on multiple degree-of-freedom positioning mechanism using wires (part1): concept, design, and control,” Int. J. Jpn. Soc. Precision Engineering, Vol.28, No.2, pp. 131-138, 1994.
- [6] A. Ming and T. Higuchi, “Study on multiple degree-of-freedom positioning mechanism using wires (part 2): development of a plannar completely restrained positioning mechanism,” Int. J. Jpn. Soc. Precision Engineering, Vol.28, No.2, pp. 131-138, 1994.
- [7] S. Kawamura, H. Kino, and C. Won, “High-speed manipulation by using parallel wire-driven robots,” Robotica, Vol.18, pp. 13-21, 2000.
- [8] S. Fang, D. Franitza, M. Torlo, F. Bekes, and M. Hiller, “Motion control of a tendon-based parallel manipulator using optimal tension distribution,” IEEE/ASME Trans. Mechatronics, Vol.9, No.3, pp. 561-568, 2004.
- [9] A. Ming and M. Kajitani, “Human skill and ultra high speed manipulator,” Proceedings of the 3rd France-Japan Congress and 1st Europe-Asia congress on Mechatronics, pp. 436-441, 1996.
- [10] A. Ming and M. Kajitani, “Human dynamic skill in high speed actions and its realization by robot,” Journal of Robotics and Mechatronics, Vol.12, No.3, pp. 318-334, 2000.
- [11] S. Suzuki and H. Inooka, “Golf swing robot emulating a human motion,” Proc. IEEE Int. workshop, Robot and Human Communication, pp. 28-33, 1997.
- [12] X. Zheng, W. Inamura, K. Shibata, and K. Ito, “Robotic batting system-an architecture for learning and dynamic patern generation,” Advanced Robotics, Vol.14, No.5, pp. 435-437, 2000.
- [13] T. Senoo, A. Namiki, and M. Ishikawa, “High-Speed Batting Using a Multi-Joint Manipulator,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 1191-1196, 2004.
- [14] G. Hirzinger, A. Albu-Schaffer, M. Hahnle, I. Schaefer, and N. Sporer, “On a new generation of torque controlled light-weight robots,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 3356-3363, 2001.
- [15] M. Kaneko, M. Higashimori, R. Takenaka, A. Namiki, and M. Ishikawa, “The 100G capturing robot –too fast to see–,” IEEE/ASME Trans. Mechatronics, Vol.8, No.1, pp. 37-44, 2003.
- [16] A. Ming and M. Kajitani, “Human skill and ultra high speed manipulator,” Proc. 3rd France-Japan Congress and 1st Europe-Asia congress on Mechatronics, pp. 436-441, 1996.
- [17] A. Ming and M. Kajitani, “Human dynamic skill in high speed actions and its realization by robot,” J. Robotics and Mechatronics, Vol.12, No.3, pp. 318-334, 2000.
- [18] A. Ming, T. Mita, S. Dhlamini, and M. Kajitani, “Motion control skill in human hyper dynamic manipulation –An investigation on the golf swing by simulation–,” Proc. IEEE int. Symposium on Computational Intelligence in Robotics and Automation, p. 4752, 2001.
- [19] A. Ming, N. Harada, M. Shimojo, and M. Kajitani, “Development of a hyper dynamic manipulator utilizing joint stop,” Proc. IEEE/RSJ Int. Conf. Intelligent Robotics and System, pp. 2084-2089, 2003.
- [20] Z. Luo, “Direct strain feedback control of flexible robot arms: new theoretical and experimental results,” IEEE Trans. Automatical Control, Vol.38, No.11, pp. 1610-1622, 1993.
- [21] B. Siciliano and W. J. Book, “A singular perturbation approach to control of lightweight flexible manipulator,” Int. J. Robotics Research, Vol.7, No.4, pp. 79-90, 1988.
- [22] D.-S. Kwon and W. J. Book, “A time-domain inverse dynamic tracking control of a single-link flexible manipulator,” ASME J. dynam. Syst., Meas., Contr., Vol.116, No.2, pp. 193-200, 1994.
- [23] E. Bayo, P. Papadopoulos, J. Stubbe, and M. A. Serna, “Inverse dynamics and kinematics of multi-link elastic robots: An iterative frequency domain approach,” Int. J. Robot. Res., Vol.8, No.9, pp. 49-62, 1989.
- [24] J. Cheong, W. K. Chung, and Y. Youm, “Inverse kinematics of multilink flexible robots for high-speed applications,” IEEE Trans. Robotcs and Automation, Vol.20, No.2, pp. 269-282, 2004.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2006 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.