single-rb.php

JRM Vol.18 No.3 pp. 271-277
doi: 10.20965/jrm.2006.p0271
(2006)

Paper:

New Biped Foot System Adaptable to Uneven Terrain

Kenji Hashimoto*, Yusuke Sugahara*, Hun-ok Lim**,***,
and Atsuo Takanishi*,***

*Department of Mechanical Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

**Department of Mechanical Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan

***Humanoid Robotics Institute (HRI), Waseda University, 17-41-2-04A Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan

Received:
October 27, 2005
Accepted:
April 17, 2006
Published:
June 20, 2006
Keywords:
biped walking, uneven terrain, locking mechanism, foot mechanism
Abstract

Many types of control have been studied assuming that soles of a biped robot’s feet contact the ground at four points. The rigid, flat soles of most such robots rarely maintain four-point contact on uneven terrain, however, and may lose balance. Solving this problem requires that both control and the foot itself be studied. We developed a new foot system, Waseda Shoes – No.1 (WS-1) to maintain four-point contact on uneven terrain, followed by Waseda Shoes – No.1 Refined (WS-1R), which solved problems with WS-1. Hardware experiment confirmed WS-1R feasibility.

Cite this article as:
Kenji Hashimoto, Yusuke Sugahara, Hun-ok Lim, and
and Atsuo Takanishi, “New Biped Foot System Adaptable to Uneven Terrain,” J. Robot. Mechatron., Vol.18, No.3, pp. 271-277, 2006.
Data files:
References
  1. [1] A. Takanishi, T. Takeya, H. Karaki, M. Kumeta, and I. Kato, “A Control Method for Dynamic Walking under Unknown External Force,” Proc. of the IEEE/RSJ IROS 1990, pp. 795-801, Tsuchiura, Japan, July, 1990.
  2. [2] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation,” Proc. of the IEEE IROS 2001, pp. 239-246, Maui, Hawaii, USA, November, 2001.
  3. [3] Y. Okumura, T. Tawara, K. Endo, T. Furuta, and M. Shimizu, “Realtime ZMP Compensation for Biped Walking Robot using Adaptive Inertia Force Control,” Proc. of the IEEE/RSJ IROS 2003, pp. 335-339, Las Vegas, USA, October, 2003.
  4. [4] Y. Sugahara, T. Hosobata, Y. Mikuriya, H. O. Lim, and A. Takanishi, “Realization of Stable Dynamic Walking by a Parallel Bipedal Locomotor on Uneven Terrain Using a Virtual Compliance Control,” Proc. of the IEEE/RSJ IROS 2003, pp. 595-600, Las Vegas, USA, October, 2003.
  5. [5] S. Kagami, K. Nishiwaki, J. J. Kuffner, Y. Kuniyoshi, M. Inaba, and H. Inoue, “Online 3D Vision, Motion Planning and Bipedal Locomotion Control Coupling System of Humanoid Robot: H7,” Proc. of the IEEE/RSJ IROS 2002, pp. 2557-2562, Lausanne, Switzerland, October, 2002.
  6. [6] K. Nishiwaki, S. Kagami, J. Kuffner,M. Inaba, and H. Inoue, “Humanoid ‘JSK-H7’: Reserch Platform for Autonomous Behavior and Whole Body Motion,” Proc. of the Third IARP International Workshop on Humanoid and Human Friendly Robotics, pp. 2-9, Tsukuba, Japan, December, 2002.
  7. [7] J. Yamaguchi, A. Takanishi, and I. Kato, “Experimental Development of a Foot Mechanism with Shock Absorbing Material for Acquisition of Landing Surface Position Information and Stabilization of Dynamic Biped Walking,” Proc. of the IEEE ICRA 1995, pp. 2892-2899, Nagoya, Aichi, Japan, May, 1995.
  8. [8] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda Humanoid Robot,” Proc. of the IEEE ICRA 1998, pp. 1321-1326, Leuven, Belgium, May, 1998.
  9. [9] M. Hirose, Y. Haikawa, T. Takenaka, and K. Hirai, “Development of Humanoid Robot ASIMO,” Proc. of the IEEE/RSJ IROS 2001, Workshop2, Maui, Hawaii, USA, 2001.
  10. [10] S. Kajita, K. Yokoi, M. Saigo, and K. Tanie, “Balancing a Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback,” Proc. of the IEEE ICRA 2001, pp. 3376-3382, Seoul, Korea, May, 2001.
  11. [11] K. Kaneko, S. Kajita, F. Kanehiro, K. Yokoi, K. Fujiwara, H. Hirukawa, T. Kawasaki, M. Hirata, and T. Isozumi, “Design of Advanced Leg Module for Humanoid Robotics Project of METI,” Proc. of the IEEE ICRA 2002, pp. 38-45, Washington, DC, USA, May, 2002.
  12. [12] M. Ogata, and S. Hirose, “Study on Ankle Mechanism for Walking Robots –Development of 2 D.O.F. Coupled Drive Ankle Mechanism with Wide Motion Range–,” Proc. of the IEEE/RSJ IROS 2004, pp. 3201-3206, Sendai, Japan, 2004.
  13. [13] Y. Sugahara, T. Endo, H. O. Lim, and A. Takanishi, “Design of a Battery-powered Multi-purpose Bipedal Locomotor with Parallel Mechanism,” Proc. of the IEEE/RSJ IROS 2002, pp. 2658-2663, Lausanne, Switzerland, October, 2002.
  14. [14] Y. Sugahara, T. Hosobata, Y. Mikuriya, H. Sunazuka, H. O. Lim, and A. Takanishi, “Realization of Dynamic Human-Carrying Walking by a Biped Locomotor,” Proc. of the IEEE ICRA 2004, pp. 3055-3060, New Orleans, USA, April, 2004.
  15. [15] K. Hashimoto, T. Hosobata, Y. Sugahara, Y. Mikuriya, H. Sunazuka, M. Kawase, H. O. Lim, and A. Takanishi, “Development of Foot System of Biped Walking Robot Capable of Maintaning Four-point Contact,” Proc. of the IEEE/RSJ IROS 2005, pp. 1464-1469, Edmonton, Canada, August, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 15, 2021