JRM Vol.18 No.2 pp. 114-120
doi: 10.20965/jrm.2006.p0114


Concept of a Micro Gyroscope Using Electro-Conjugate Fluid (ECF) and Development of an ECF Micro Gyro-Motor

Shinichi Yokota*, Ryuta Nishizawa*, Kenjiro Takemura*,
and Kazuya Edamura**

*Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-41 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

**New Technology Management Co., Ltd., 2-9-1-306 Higashi-Shinkoiwa, Katsushika-ku, Tokyo 124-0023, Japan

October 27, 2005
February 8, 2006
April 20, 2006
electro-conjugate fluid, functional fluid, gyroscope, sensor

We propose a novel micro gyroscope using electro-conjugate fluid. The electro-conjugate fluid (ECF) is a dielectric fluid that produces a powerful flow (ECF jet) when subjected to high DC voltage. Using the ECF, we developed a micromotor having no output axis (an ECF micro gyro-motor) in which a disk plate rotor rotates and floats due to the ECF jet. When angular velocity is applied to the ECF gyro-motor, the floating rotor declines against the stator. Measuring the deflection angle enables us to detect the angular velocity. We fabricated ECF micro gyro motors with a rotor diameter of 3mm and 1.5mm to obtain design guidelines for the ECF micro gyroscope, and developed an ECF micro gyroscope. Experiments confirm the possibility of the ECF micro gyroscope.

Cite this article as:
Shinichi Yokota, Ryuta Nishizawa, Kenjiro Takemura, and
and Kazuya Edamura, “Concept of a Micro Gyroscope Using Electro-Conjugate Fluid (ECF) and Development of an ECF Micro Gyro-Motor,” J. Robot. Mechatron., Vol.18, No.2, pp. 114-120, 2006.
Data files:
  1. [1] “Introduction of Gyro Technology,” Tamagawa Seiki Co. Ltd. (in Japanese).
  2. [2] R. Oboe, R. Antonello, E. Lasalandra, G. S. Durante, and L. Prandi, “Control of a Z-Axis MEMS Vibrational Gyroscope,” IEEE/ASME Trans. Mechatronics, Vol.10, No.4, pp. 364-370, 2005.
  3. [3] T. Rogers, N. Aitken, K. Stribley, and J. Boyd, “Improvements in MEMS gyroscope production as a result of using in situ, aligned, current-limited anodic bonding,” Sens. Actuators A, Vol.123, No.124, pp. 106-110, 2005.
  4. [4] S. Lee, S. Park, J. Kim, S. Lee, and DI. Cho, “Surface/Bulk Micromachined Single-Crystalline-Silicon Micro-Gyroscope,” J. Microelectromechanical Systems, Vol.9, No.4, pp. 557-567, 2000.
  5. [5] Y. Otsubo, and K. Edamura, “Dielectric Fluid Motors,” Applied Physics Letters, Vol.71, No.3, pp. 318-320, 1997.
  6. [6] S.-I. Jeong, J. Seyed-Yagoobi, and P. Atten, “Theoretical/Numerical Study of Electrohydrodynamic Pumping Through Conduction Phenomenon,” IEEE Trans. Industry Applications, Vol.39, No.2, pp. 355-361, 2003.
  7. [7] S. Yokota, Y. Kondoh, A. Sadamoto, Y. Otsubo, and K. Edamura, “A Micro Motor Using Electro-conjugate Fluids (ECF) (Proposition of Stator Electrode-type (SE-type) Micro ECF Motors),” Int. J. JSME Ser. C, Vol.44, No.3, pp. 756-762, 2000.
  8. [8] S. Yokota, “A 2mm ECF micromotor,” Proc. 7th Int. Conf. Mechatronics Technology (ICMT’03), pp. 361-366, 2003.
  9. [9] R. Abe, and S. Yokota, “A Micro Actuator using ECF-Jet with Needle-type Electrode,” Proc. FLUCOME’03, CD-ROM, 2003.
  10. [10] K. Takemura, S. Yokota, and K. Edamura, “A Micro Artificial Muscle Actuator using Electro-conjugate Fluid,” Proc. IEEE Int. Conf. Robotics and Automation (ICRA2005), pp. 534-539, 2005.
  11. [11] S. Yokota, K. Kawamura, K. Takemura, and K. Edamura, “High-Integration Micromotor Using Electro-Conjugate Fluid (ECF),” J. Robotics and Mechatronics, Vol.17, No.2, pp. 142-148, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021