Paper:
Development of Modular Humanoid Robot Based on Functionally Distributed Modular Robot Architecture
Tetsuya Taira, and Nobuyuki Yamasaki
School of Science for Open and Environmental Systems, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama City, Kanagawa 223-8522, Japan
- [1] S. Kagami, K. Nishiwaki, J. Kuffner, Y. Kuniyoshi, M. Inaba, and H. Inoue, “Online 3D Vision, Motion Planning and Bipedal Locomotion Control Coupling System of Humanoid Robot: H7,” In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2557-2562, 2002.
- [2] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu, “Development and Evaluation of an Interactive Humanoid Robot “Robovie”,” In Proc. of IEEE International Conference on Robotics and Automation, 2002
- [3] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, “Design of Prototype Humanoid Robotics Platform for HRP,” In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2431-2436, 2002.
- [4] V. Yodaiken, and M. Barabanov, “RT-Linux,”
http://www.rtlinux.org - [5] Y. Ishiwata, and T. Matsui, “Development of Linux which has Advanced Real-Time Processing Function,” In Proc. 16th Annual Conference of Robotics Society of Japan, pp. 355-356, 1998.
- [6] R. Bischoff, and V. Graefe, “Integrating, Vision, Touch and Natural Language in the Control of a Situation-Oriented Behavior-Based Humanoid Robot,” In Proc. of IEEE International Conference on Systems, Man, and Cybernetics, pp. 999-1004, 1999.
- [7] Bosch, “CAN specification version 2.0,” Published by Robert Bosch GmbH, September 1991.
- [8] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The intelligent ASIMO: System Overview and Integration,” In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2478-2483, 2002.
- [9] T. Fukuda, and Y. Kawauchi, “Cellular Robotic System (CEBOT) as One of the Realization of Self-Organizing Intelligent Universal Manipulator,” In Proc. of IEEE International Conference on Robotics and Automation, pp. 662-667, 1990.
- [10] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji, “Hardware design of modular robotic system,” In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2210-2217, 2000.
- [11] M. Fujita, and K. Kageyama, “An Open Architecture for Robot Entertainment,” In Proc. of International Conference on Autonomous Agents, pp. 435-442, 1997.
- [12] M. Fujita, H. Kitano, and K. Kageyama, “A Reconfigurable Robot Platform,” Robotics and Autonomous, Vol.29, pp. 119-132, 1999.
- [13] http://www.renesas.com/
- [14] http://www.necel.com/
- [15] N. Yamasaki, “Responsive Processor for Parallel/Distributed Real-Time Control,” In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1238-1244, Oct. 2001.
- [16] http://www.itscj.ipsj.or.jp/ipsj-ts/02-06/toc.htm
- [17] http://www.flexray-group.com/
- [18] T. Taira, and N. Yamasaki, “Functionally Distributed Control Architecture for Autonomous Mobile Robots,” Journal of Robotics and Mechatronics, Vol.16, No.2, pp. 217-224, 2004.
- [19] H. Kobayashi, and N. Yamasaki, “RT-Frontier: A Real-Time Operating System for Practical Imprecise Computation,” In Proc. of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 255-264, May 2004.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2005 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.