Paper:
Insertion of Long Peg into Tandem Shallow Hole Using Search Trajectory Generation
Takayuki Matsuno*, Toshio Fukuda*, and Yasuhisa Hasegawa**
*Department of Micro-Nano Systems Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
**Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- [1] D. E. Whitney, “Quasi-Statics Assembly of Compliantly Supported Rigid Parts,” ASME Journal of Dynamic Systems, Measurement and Control, Vol.104, pp. 65-77, 1982.
- [2] D. E. Whitney, and J. M. Rourke, “Mechanical Behavior and Design Equations for Elastomer Shaer Pad Remote Center Compliances,” ASME Journal of Dynamic Systems, Measurement and Control, Vol.108, pp. 223-232, 1986.
- [3] J. Wei, “Improving Robotic Assembly Performance through Autonomous Exploration,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 3303-3308, 2002.
- [4] M. Minami, H. Osumi, T. Arai, and K. Moriyama, “Trajectory Planning of Dual Arm System for Automatic Assembly,” Proceedings of The 13th Annual Conference of the Robotics Society of Japan, pp. 785-786, 1985.
- [5] S. Hirai, H. Asada, and H. Tokumaru, “Kinematic Analysis of Contact State Transition in Assembly Operations and Automatic Generation of Transition Network,” Journal of The Society of Instrument and Control Engineers, Vol.24, No.4, pp. 406-413, 1987.
- [6] T. Yoshikawa, Y. Yokokohji, and Y. Yu, “Assembly Planning Operation Strategies Based on the Degree of Constraint,” Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp.682-687, 1991.
- [7] T. Arai, and N. Kinoshita, “The Probability of Success in Assembly –The Stochastic Estimation of Assembly Machine–,” Journal of Japan Society for Precision Mechanics, Vol.45, No.3. pp. 299-304, 1979.
- [8] A. Diaz-Calderon, D. Navin-Chandra, and P. K. Khosla, “Measuring the diffculty of assembly tasks from tool access information,” Proceedings IEEE International Symposium on Assembly and Task Planning, pp. 87-93, 1995.
- [9] G. Xue, T. Fukuda, F. Arai, H. Asama, H. Kaetsu, and I. Endo, “Dynamically Reconfigurable Robotic System –Assembly of New Type Cells as a Dual-Peg-in-Hole Problem–,” Proc. of Int’l Symp. on Distributed Autonomous Robotics Systems (DARS’94), pp. 383-394, 1994.
- [10] M. Tsuda, and T. Takahashi, “A method for changing contact states for robotic assembly by using some local models in a multiagent system,” Proceedings of IEEE International Conference on Robotics and Automation, Vol.3, pp. 2713-2719, 1995.
- [11] T. Fukuda, M. Nakaoka, T. Ueyama, and Y. Hasegawa, “Direct teaching and error recovery method for assembly task based on a transition process of a constraint condition,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1518-1523, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2004 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.