Paper:
Coordination Control of Arm Using Antagonistic Actuators
Toru Oshima*, Tomohiko Fujikawa** and Minayori Kumamoto***
*Department of Mechanical Systems Engineering, Faculty of Engineering, Toyama Prefectural University, Kurogawa 5180, Kosugi, Toyama, 939-0398, Japan
**Department of Electronic Control Engineering, Toyama National College of Maritime Technology, Ebie Neriya 1-2, Sinminato, Toyama, 933-0293, Japan
***Laboratory of Image Information Science and Technology, Hongo 5-26-4, Bunkyo, Tokyo, 113-0033, Japan
In a mechanical joint drive used in robot arms, 1 actuator drives each joint. To drive joints in musculoskeletal animal limbs, in which skeletal muscles are used as actuators, a pair of bi-articular muscles drives 2 joints simultaneously in addition to a pair of monoarticular muscles for driving 1 joint. In our study, the mutual coordination of antagonistic mono-articular and antagonistic bi-articular muscles in in the horizontal arm plane were examined using electromyogram, results were analyzed by a mechanical 2-joint link model, and the relationship between the pattern of coordination of antagonistic muscles and output force generated by the arm clarified. A neural network model that generates the pattern of coordination was proposed to clarify the difference between conventional robots and animals in the force control mode for limbs.
Copyright© 2002 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.