single-rb.php

JRM Vol.10 No.5 pp. 431-438
doi: 10.20965/jrm.1998.p0431
(1998)

Paper:

GA-Based Q-CMAC Applied to Airship Evasion Problem

Yuka Akisato, Keiji Suzuki, and Azuma Ohuchi

Faculty of Engineering, Hokkaido University, N13 W8, Sapporo 060-8628, Japan

Received:
April 20, 1998
Accepted:
September 21, 1998
Published:
October 20, 1998
Keywords:
CMAC-based Q-learning, incremental state space segmentation, GA, airship control
Abstract

The purpose of this research is to acquire an adaptive control policy of an airship in a dynamic, continuous environment based on reinforcement learning combined with evolutionary construction. The state space for reinforcement learning becomes huge because the airship has great inertia and must sense huge amounts of information from a continuous environment to behave appropriately. To reduce and suitably segment state space, we propose combining CMAC-based Q-learning and its evolutionary state space layer construction. Simulation showed the acquisition of state space segmentation enabling airships to learn effectively.

Cite this article as:
Yuka Akisato, Keiji Suzuki, and Azuma Ohuchi, “GA-Based Q-CMAC Applied to Airship Evasion Problem,” J. Robot. Mechatron., Vol.10, No.5, pp. 431-438, 1998.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 27, 2021