JRM Vol.8 No.4 pp. 372-377
doi: 10.20965/jrm.1996.p0372


Control of a Robot Arm by Electromyogram -Recognition of Arm Motion by Neural Network

Masafumi Uchida, Hideto Ide

College of Science and Engineering, Aoyama Gakuin University, 6-16-1 Chitosedai, Setagaya-ku, Tokyo, 157 Japan

April 11, 1996
May 10, 1996
August 20, 1996
EMG, Neural network, Interval-value
In this study, 1/3 Octave-analyzed EMG patterns were classified by neural networks which possess learning ability and deal with Interval-Valued data to cope with the position slip of electrodes. Interval-Valued data is a method express an attribute as a dot in the multi-dimension. For example, the attribute is constant and is changing. EMG were measured under following conditions; (1) closing hand, (2) opening hand, (3) bending wrist to the bending side, (4) bending wrist to the stretching side, (5) turning wrist to the inside, (6) turning wrist to the outside.
Cite this article as:
M. Uchida and H. Ide, “Control of a Robot Arm by Electromyogram -Recognition of Arm Motion by Neural Network,” J. Robot. Mechatron., Vol.8 No.4, pp. 372-377, 1996.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 23, 2024