Paper:
Parallel Computing Approach for Rapid Estimation of Tsunami Hazard and Population Exposure in Peru
Fernando Garcia*,**
, Miguel Estrada*,**,
, Julian Palacios**
, Carlos Davila*,**
, Angel Quesquen*,**
, Jorge Morales***
, Bruno Adriano***
, Erick Mas***
, and Shunichi Koshimura***

*GeoGiRD Research Group, Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería (UNI)
Av. Tupac Amaru 1150, Rimac, Lima 15333, Peru
**Geomatics Laboratory, Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres
Lima, Peru
***International Research Institute of Disaster Science, Tohoku University
Sendai, Japan
Corresponding author
Peru faces a significant tsunami hazard due to its location along the Pacific Ring of Fire. Historical megathrust earthquakes and their resulting tsunamis have caused severe damage, highlighting the need for improved warning systems. This study investigates potential tsunami impacts along the central Peruvian coast—including the regions of Ica, Callao, Lima, and Ancash—using numerical simulations. To enable rapid and efficient simulations, we developed gWave-CPU, a parallelized version of the TUNAMI-N2 model created at Tohoku University. Using 90-m-resolution topographic and bathymetric data in combination with census data, we assessed population exposure under two seismic scenarios: a plausible event based on interseismic coupling and a historical scenario simulating the 1746 tsunami. Under the historical scenario, the exposed population was estimated at 320,128, with the highest concentrations in Callao and Lima. Numerical simulations of four hours of tsunami propagation and inundation were conducted using our parallelized implementation, reducing computation time to 68 minutes—a 26.3-fold speedup compared to the conventional model. The results demonstrate that tsunami inundation and population exposure in this region can be efficiently estimated using the proposed approach, providing a valuable contribution to tsunami hazard assessment, management, and emergency preparedness along Peru’s central coast.
- [1] C. Jimenez et al., “Seismic source of 1746 Callao earthquake from tsunami numerical modeling,” J. Disaster Res., Vol.8 No.2, pp. 266-273, 2013. https://doi.org/10.20965/jdr.2013.p0266
- [2] E. Silgado, “Historia de los sismos más notables ocurridos en el Perú (1513–1974),” Perú Instituto de Geologí y Minería, Vol.3, 1978.
- [3] C. Jiménez, C. Carbonel, and J. C. Villegas-Lanza, “Seismic source of the earthquake of Camana Peru 2001 (Mw 8.2) from joint inversion of geodetic and tsunami data,” Pure and Applied Geophysics, Vol.178, pp. 4763-4775, 2021. https://doi.org/10.1007/s00024-020-02616-8
- [4] Organizacion Panamericana de la Salud (OPS), “Terremoto de pisco - Perú pisco a dos años del sismo, crónica y lecciones aprendidas en el sector salud,” Organizacion Panamericana de la Salud, 2010.
- [5] “DIHIDRONAV,” Informe post tsunami 2007. https://www.dhn.mil.pe/files/cnat/pdf/otros/Informe_Post_Tsunami_Pisco%202007.pdf [Accessed June 1, 2024]
- [6] IGP, “Sismotectónica del sismo de Yauca del 28 de junio 2024 (M7.0) y niveles de sacudimiento del suelo,” 2024.
- [7] INDECI, “Gu’i para la implementación de sat-tsunami a nivel distrital y comunitario 2017 dirección de preparación,” 2017.
- [8] J. C. Villegas-Lanza et al., “Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation,” JGR Solid Earth, Vol.121, pp. 7371-7394, 2016. https://doi.org/10.1002/2016JB013080
- [9] C. Jiménez, C. Carbonel, J. C. Villegas-Lanza, M. Quiroz, and Y. Wang, “Seismic source of 1966 Huacho Peru Earthquake (Mw 8.1) from tsunami waveform inversion,” Pure and Applied Geophysics, Vol.180, pp. 1679-1693, 2023. https://doi.org/10.1007/s00024-022-03132-7
- [10] CENEPRED, “Escenario de riesgo por sismo y tsunami para Lima y Callao 2020.” https://sigrid.cenepred.gob.pe/sigridv3/storage/biblioteca//10354_escenario-de-riesgo-por-sismo-y-tsunami-para-lima-y-callao.pdf [Accessed August 15, 2024]
- [11] F. Lø vholt et al., “Global tsunami hazard and exposure due to large co-seismic slip,” Int. J. of Disaster Risk Reduction, Vol.10, Part B, pp. 406-418, 2014. https://doi.org/10.1016/j.ijdrr.2014.04.003
- [12] C. Goto, Y. Ogawa, N. Shuto, and F. Imamura, “Numerical method of tsunami simulation with the leap-frog scheme,” Intergovernmental Oceanographic Commission (IOC) / Int. Union of Geodesy and Geophysics (IUGG) TIME Project, 1997.
- [13] A. Musa et al., “Real-time tsunami inundation forecast system for tsunami disaster prevention and mitigation,” The J. of Supercomputing , Vol.74, pp. 3093-3113, 2018. https://doi.org/10.1007/s11227-018-2363-0
- [14] K. Takahashi et al., “Modernizing an operational real-time tsunami simulator to support diverse hardware platforms,” 2024 IEEE Int. Conf. on Cluster Computing (CLUSTER), pp. 414-425, 2024. https://doi.org/10.1109/CLUSTER59578.2024.00043
- [15] N. Pulido and J.C. Villegas-Lanza, “Mega-thrust earthquake potential along the subduction zone of Peru based on the earthquake energy-budget 2023,” XXVIII General Assembly of the Int. Union of Geodesy and Geophysics, 2023. https://doi.org/10.57757/IUGG23-3817
- [16] B. Adriano et al., “Tsunami inundation mapping in Lima for two tsunami source scenarios,” J. Disaster Res., Vol.8 No.2, pp. 274-284, 2013. https://doi.org/10.20965/jdr.2013.p0274
- [17] J. Palacios, M. Diaz, and J. Morales, “Analysis of structural performance of existing rc building designated as tsunami evacuation shelter in case of earthquake-tsunami scenarios in lima city,” Tecnia, Vol.29, No.2, pp. 109-124, 2019. https://doi.org/10.21754/tecnia.v29i2.704
- [18] CENEPRED, “Sistema de Información para la Gestión del Riesgo de Desastres (SIGRID) 2024.” https://sigrid.cenepred.gob.pe/sigridv3/mapa [Accessed October 10, 2024]
- [19] National institute of statistics and informatics (INEI), “Portal de infraestructura de datos espaciales” 2023. https://ide.inei.gob.pe/#capas [Accessed November 10, 2024]
- [20] F. Imamura, H. Yen, P. Liu, and C. Synolakis, “Review of tsunami simulation with a finite difference method,” Long-Wave Runup Models, Singapore: World Scientific Publishing Co. Pte Ltd., pp. 25-42, 1996.
- [21] Y. Okada, “Internal deformation due to shear and tensile faults in a half-space,” Bulletin of the Seismological Society of America, Vol.82, pp. 1018-1040, 1992. https://doi.org/10.1785/BSSA0820021018
- [22] C. Davila et al., “Assessment of building vulnerability to tsunami in Ancon Bay, Peru, using high-resolution unmanned aerial vehicle imagery and numerical simulation,” Drones, Vol.9, No.6, Article No.402, 2025. https://doi.org/10.3390/drones9060402
- [23] E, Mas, B. Adriano, J. K. Horiuchi, and S. Koshimura, “Reconstruction process and social issues after the 1746 earthquake and tsunami in Peru: Past and present challenges after tsunami events,” Advances in Natural and Technological Hazards Research, Vol.44, pp. 97-109, 2015. https://doi.org/10.1007/978-3-319-10202-3_7
- [24] J. C. Gomez-Zapata et al., “Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment: an application case in Lima, Peru,” Natural Hazards and Earth System Sciences, Vol.21, Issue 21, pp. 3599-3628, 2021. https://doi.org/10.5194/nhess-21-3599-2021
- [25] J. C. Gómez Zapata et al., “Scenario-based multi-risk assessment from existing single-hazard vulnerability models, an application to consecutive earthquakes and tsunamis in Lima, Peru,” Natural Hazards and Earth System Sciences, Vol.23, pp. 2203-2228, 2023. https://doi.org/10.5194/nhess-23-2203-2023
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.