Paper:
Comparative Evaluation of Site Response Analysis Methods in Lima City: Case of the 2021 (Mw 6.0) Mala Earthquake
Cinthia Calderon*1
, Zenon Aguilar*1,
, Gerson Carrasco*1
, Juan C. Tarazona*1
, Carlos Gonzales*1
, Diana Calderon*1
, Fernando Lázares*1
, Nelson Pulido*2, Hiroe Miyake*3
, Hiroaki Yamanaka*4, and Hisao Kondo*5

*1Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID), Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería (UNI)
Av. Tupac Amaru 1150, Rimac, Lima 15333, Peru
Corresponding author
*2National Research Institute for Earth Science and Disaster Resilience (NIED)
Tsukuba, Japan
*3Earthquake Research Institute, The University of Tokyo
Tokyo, Japan
*4Institute of Science Tokyo
Yokohama, Japan
*5Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology
Tsukuba, Japan
The seismic response evaluation of soil deposits in Metropolitan Lima requires analysis methods that can capture local amplification effects, owing to the region’s complex alluvial stratigraphy and high seismicity. This study performs a comparative assessment of four site response analysis methods using records from the 2021 Mala (Mw 6.0) earthquake, located south of Lima: (1) normative amplification factors (NAF E.030), (2) ground motion models (GMM), (3) average amplification factors (AAF), and (4) one-dimensional wave propagation analysis (1DPA). Performance was evaluated using root mean square error (RMSE) between observed and predicted response spectra as the primary accuracy metric. A total of 31 accelerographic stations were analyzed, classified by time-averaged shear wave velocity of the top 30 m soil layers (Vs30) into three categories: stiff (S1’: 550–800 m/s), intermediate (S2′: 350–550 m/s), and soft (S3’: 200–350 m/s) soils. Linear elastic soil behavior was confirmed through 1DPA, indicating maximum shear strains below 0.01% across all sites, well within the elastic threshold. The results revealed that 1DPA analysis produced the most accurate estimates, with average RMSE values of 27.4 cm/s2 for S1’ soils and 38.5 cm/s2 for S2’ soils. NAF E.030 performed well in 8 out of 10 stiff soil sites (RMSE =33.1 cm/s2), however, exhibited significant limitations in softer soils where RMSE values exceeded 37 cm/s2. GMM and AAF methods demonstrated RMSE values ranging from 44.8 to 51.4 cm/s2, with reduced accuracy in long-period ranges (>1.0 s) and S3’ soil sites. These findings highlight the need to revise current normative amplification factors for soft soils and support the implementation of 1DPA analysis in areas with complex stratigraphy or deep sedimentary deposits, thereby contributing to improved seismic-resistant design practices in Metropolitan Lima.
- [1] C. F. Walker, “Shaky colonialism: The 1746 earthquake-tsunami in Lima, Peru, and its long aftermath,” Duke University Press, 2008. https://doi.org/10.1215/9780822388920
- [2] P.-Y. Bard, “Effects of surface geology on ground motion: Recent results and remaining issues,” Proc. of the 10th European Conf. on Earthquake Engineering, Vol.1, pp. 305-323, 1994.
- [3] D. Calderon, Z. Aguilar, F. Lázares, S. Alarcon, and S. Quispe, “Development of a seismic microzoning map for Lima City and Callao, Peru,” J. Disaster Res., Vol.9, No.6, pp. 939-945, 2014. https://doi.org/10.20965/jdr.2014.p0939
- [4] D. Calderon, “Dynamic characteristics of the soils in Lima, Peru, by estimating shallow and deep shear-wave velocity profiles,” Ph.D. Thesis, Chiba University, 2012.
- [5] T. Sekiguchi, D. Calderon, S. Nakai, Z. Aguilar, and F. Lázares, “Evaluation of surface soil amplification for wide areas in Lima, Peru,” J. Disaster Res., Vol.8, No.2, pp. 259-265, 2013. https://doi.org/10.20965/jdr.2013.p0259
- [6] S. P. Villacorta Chambi, S. Núñez Juárez, J. M. Vásquez Acuña, W. Pari Pinto, M. B. Ochoa Zubiate, C. L. Benavente Escobar, L. Tatard, G. Luque Poma, M. Rosado Seminario, L. Fidel Smoll, and J. Úbeda Palenque, “Peligros geológicos en el área de Lima Metropolitana y la región Callao,” INGEMMET, Boletín Serie C: Geodinámica e Ingeniería Geológica, No.59, 2015 (in Spanish).
- [7] J. P. Le Roux, C. Tavares Correa, and F. Alayza, “Sedimentology of the Rímac-Chillón alluvial fan at Lima, Peru, as related to Plio-Pleistocene sea-level changes, glacial cycles and tectonics,” J. South American Earth Sciences, Vol.13, No.6, pp. 499-510, 2000. https://doi.org/10.1016/S0895-9811(00)00044-4
- [8] Z. Aguilar, J. C. Tarazona Gonzales, L. Vergaray, and J. Barrantes, “Site response analysis and its comparison with the peruvian seismic design spectrum,” Revista Tecnia, Vol.29, No.2, 2019. https://doi.org/10.21754/tecnia.v29i2.700
- [9] SENCICO, “Norma Técnica E.030 Diseño Sismorresistente,” Reglamento Nacional de Edificaciones, Ministerio de Vivienda, Construcción y Saneamiento, 2018 (in Spanish).
- [10] J. Soto Huaman, J. E. Alva Hurtado, and C. E. Ortiz Salas, “Evaluación de espectros de respuesta mediante el análisis unidimensional de respuesta de sitio en la ciudad de Lima,” Proc. of XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, 2018 (in Spanish).
- [11] Instituto Geofísico del Perú (IGP), “Sismo de Mala del 22 de Junio 2021 (M6.0) y niveles de sacudimiento del suelo,” Informe Técnico No.013-2021/IGP Ciencias de la Tierra Sólida, 2021 (in Spanish). https://sigrid.cenepred.gob.pe/sigridv3/storage/biblioteca//11341_informe-tecnico-n00013-2021-el-sismo-de-mala-del-22-de-junio-2021-m60-y-niveles-de-sacudimientos-del-suelo.pdf [Accessed June 21, 2024]
- [12] Z. Aguilar and J. Tarazona, “New seismicity based seismic sources and hazard model for Peru,” Proc. 18th World Conf. on Earthquake Engineering, 2024.
- [13] D. Calderon, C. Gonzales, Z. Aguilar, and K. Huerta, “Desarrollo de un mapa de amplificación sísmica de Lima Metropolitana y el Callao mediante correlación de múltiples variables,” Civil Engineering J. (in press).
- [14] C. Jiménez, N. Moggiano, S. Yauri, and M. Calvo, “Fuente sísmica del terremoto de Huacho-Perú 1966 de 8.1 Mw a partir de inversión de registros mareográficos,” Revista de Investigación de Física, Vol.19, Article No.191601401, 2016 (in Spanish). https://doi.org/10.15381/rif.v19i1.13549
- [15] H. Tavera and E. Buforn, “Source mechanism of earthquakes in Peru,” J. of Seismology, Vol.5, pp. 519-540, 2001. https://doi.org/10.1023/A:1012027430555
- [16] F. G. Fernández Flores, “Estudio sobre el sismo de 3 de octubre de 1974 en Lima metropolitana,” Bachelor’s Thesis, National University of Engineering, Peru, 1977 (in Spanish)
- [17] J. C. Villegas-Lanza, M. Chlieh, O. Cavalié, H. Tavera, P. Baby, J. Chire-Chira, and J.-M. Nocquet, “Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation,” J. of Geophysical Research: Solid Earth, Vol.121, No.10, pp. 7371-7394, 2016. https://doi.org/10.1002/2016JB013080
- [18] N. Pulido, Z. Aguilar, H. Tavera, M. Chlieh, D. Calderon, T. Sekiguchi, S. Nakai, and F. Yamazaki, “Scenario source models and strong ground motion for future mega-earthquakes: Application to Lima, central Peru,” Bulletin of the Seismological Society of America, Vol.105, No.1, pp. 368-386, 2015. https://doi.org/10.1785/0120140098
- [19] Global CMT, Seismic Event: 20210623230254A Near Coast of Peru, Data set, 2021. https://www.globalcmt.org [Accessed March 21, 2024]
- [20] S. L. Kramer and J. P. Stewart, “Geotechnical earthquake engineering,” 2nd Edition, CRC Press, 2024.
- [21] Servicio Nacional de Capacitación para la Industria de la Construcción, “Servicio de consultoría para ejecución del estudio caracterización geotécnica y geofísica de estaciones acelerométricas del SENCICO,” 2018 (in Spanish).
- [22] C. Phillips and Y. M. A. Hashash, “Damping formulation for nonlinear 1D site response analyses,” Soil Dynamics and Earthquake Engineering, Vol.29, No.7, pp. 1143-1158, 2009. https://doi.org/10.1016/j.soildyn.2009.01.004
- [23] N. Abrahamson and Z. Gülerce, “Regionalized ground-motion models for subduction earthquakes based on the NGA-SUB database,” Pacific Earthquake Engineering Research Center, Report No.2020/25, 2020. https://doi.org/10.55461/SSXE9861
- [24] G. Parker, J. Stewart, D. Boore, G. Atkinson, and B. Hassani, “NGA-subduction global ground-motion models with regional adjustment factors,” Pacific Earthquake Engineering Research Center, Report No.2020/03, 2020. https://doi.org/10.55461/INKE2546
- [25] G. Montalva, N. Bastías, and A. Rodriguez-Marek, “Ground-motion prediction equation for the Chilean subduction zone,” Bulletin of the Seismological Society of America, Vol.107, No.2, pp. 901-911, 2017. https://doi.org/10.1785/0120160221
- [26] D. Park and Y. M. A. Hashash, “Soil damping formulation in nonlinear time domain site response analysis,” J. of Earthquake Engineering, Vol.8, No.2, pp. 249-274, 2004. https://doi.org/10.1142/S1363246904001420
- [27] H. B. Seed and I. M. Idriss, “Soil moduli and damping factors for dynamic response analyses,” Technical Report, No.EERRC-70-10, University of California, Berkeley, 1970.
- [28] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature,” Geoscientific Model Development, Vol.7, pp. 1247-1250, 2014. https://doi.org/10.5194/gmd-7-1247-2014
- [29] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky, and V. A. Kamaev, “A survey of forecast error measures,” World Applied Sciences J., Vol.24, No.24, pp. 171-176, 2013. https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032
- [30] T. C. Goulet, C. B. Haselton, and J. J. Bozorgnia, “Evaluation of ground motion selection and modification methods,” PEER Report 2011/04, Pacific Earthquake Engineering Research Center, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.