single-dr.php

JDR Vol.20 No.6 pp. 886-898
(2025)
doi: 10.20965/jdr.2025.p0886

Paper:

Comparative Evaluation of Site Response Analysis Methods in Lima City: Case of the 2021 (Mw 6.0) Mala Earthquake

Cinthia Calderon*1 ORCID Icon, Zenon Aguilar*1,† ORCID Icon, Gerson Carrasco*1 ORCID Icon, Juan C. Tarazona*1 ORCID Icon, Carlos Gonzales*1 ORCID Icon, Diana Calderon*1 ORCID Icon, Fernando Lázares*1 ORCID Icon, Nelson Pulido*2, Hiroe Miyake*3 ORCID Icon, Hiroaki Yamanaka*4, and Hisao Kondo*5 ORCID Icon

*1Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID), Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería (UNI)
Av. Tupac Amaru 1150, Rimac, Lima 15333, Peru

Corresponding author

*2National Research Institute for Earth Science and Disaster Resilience (NIED)
Tsukuba, Japan

*3Earthquake Research Institute, The University of Tokyo
Tokyo, Japan

*4Institute of Science Tokyo
Yokohama, Japan

*5Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology
Tsukuba, Japan

Received:
February 18, 2025
Accepted:
May 12, 2025
Published:
December 1, 2025
Keywords:
site response analysis, seismic amplification factors, ground motion models, one-dimensional wave propagation, Metropolitan Lima
Abstract

The seismic response evaluation of soil deposits in Metropolitan Lima requires analysis methods that can capture local amplification effects, owing to the region’s complex alluvial stratigraphy and high seismicity. This study performs a comparative assessment of four site response analysis methods using records from the 2021 Mala (Mw 6.0) earthquake, located south of Lima: (1) normative amplification factors (NAF E.030), (2) ground motion models (GMM), (3) average amplification factors (AAF), and (4) one-dimensional wave propagation analysis (1DPA). Performance was evaluated using root mean square error (RMSE) between observed and predicted response spectra as the primary accuracy metric. A total of 31 accelerographic stations were analyzed, classified by time-averaged shear wave velocity of the top 30 m soil layers (Vs30) into three categories: stiff (S1’: 550–800 m/s), intermediate (S2: 350–550 m/s), and soft (S3’: 200–350 m/s) soils. Linear elastic soil behavior was confirmed through 1DPA, indicating maximum shear strains below 0.01% across all sites, well within the elastic threshold. The results revealed that 1DPA analysis produced the most accurate estimates, with average RMSE values of 27.4 cm/s2 for S1’ soils and 38.5 cm/s2 for S2’ soils. NAF E.030 performed well in 8 out of 10 stiff soil sites (RMSE =33.1 cm/s2), however, exhibited significant limitations in softer soils where RMSE values exceeded 37 cm/s2. GMM and AAF methods demonstrated RMSE values ranging from 44.8 to 51.4 cm/s2, with reduced accuracy in long-period ranges (>1.0 s) and S3’ soil sites. These findings highlight the need to revise current normative amplification factors for soft soils and support the implementation of 1DPA analysis in areas with complex stratigraphy or deep sedimentary deposits, thereby contributing to improved seismic-resistant design practices in Metropolitan Lima.

Cite this article as:
C. Calderon, Z. Aguilar, G. Carrasco, J. Tarazona, C. Gonzales, D. Calderon, F. Lázares, N. Pulido, H. Miyake, H. Yamanaka, and H. Kondo, “Comparative Evaluation of Site Response Analysis Methods in Lima City: Case of the 2021 (Mw 6.0) Mala Earthquake,” J. Disaster Res., Vol.20 No.6, pp. 886-898, 2025.
Data files:
References
  1. [1] C. F. Walker, “Shaky colonialism: The 1746 earthquake-tsunami in Lima, Peru, and its long aftermath,” Duke University Press, 2008. https://doi.org/10.1215/9780822388920
  2. [2] P.-Y. Bard, “Effects of surface geology on ground motion: Recent results and remaining issues,” Proc. of the 10th European Conf. on Earthquake Engineering, Vol.1, pp. 305-323, 1994.
  3. [3] D. Calderon, Z. Aguilar, F. Lázares, S. Alarcon, and S. Quispe, “Development of a seismic microzoning map for Lima City and Callao, Peru,” J. Disaster Res., Vol.9, No.6, pp. 939-945, 2014. https://doi.org/10.20965/jdr.2014.p0939
  4. [4] D. Calderon, “Dynamic characteristics of the soils in Lima, Peru, by estimating shallow and deep shear-wave velocity profiles,” Ph.D. Thesis, Chiba University, 2012.
  5. [5] T. Sekiguchi, D. Calderon, S. Nakai, Z. Aguilar, and F. Lázares, “Evaluation of surface soil amplification for wide areas in Lima, Peru,” J. Disaster Res., Vol.8, No.2, pp. 259-265, 2013. https://doi.org/10.20965/jdr.2013.p0259
  6. [6] S. P. Villacorta Chambi, S. Núñez Juárez, J. M. Vásquez Acuña, W. Pari Pinto, M. B. Ochoa Zubiate, C. L. Benavente Escobar, L. Tatard, G. Luque Poma, M. Rosado Seminario, L. Fidel Smoll, and J. Úbeda Palenque, “Peligros geológicos en el área de Lima Metropolitana y la región Callao,” INGEMMET, Boletín Serie C: Geodinámica e Ingeniería Geológica, No.59, 2015 (in Spanish).
  7. [7] J. P. Le Roux, C. Tavares Correa, and F. Alayza, “Sedimentology of the Rímac-Chillón alluvial fan at Lima, Peru, as related to Plio-Pleistocene sea-level changes, glacial cycles and tectonics,” J. South American Earth Sciences, Vol.13, No.6, pp. 499-510, 2000. https://doi.org/10.1016/S0895-9811(00)00044-4
  8. [8] Z. Aguilar, J. C. Tarazona Gonzales, L. Vergaray, and J. Barrantes, “Site response analysis and its comparison with the peruvian seismic design spectrum,” Revista Tecnia, Vol.29, No.2, 2019. https://doi.org/10.21754/tecnia.v29i2.700
  9. [9] SENCICO, “Norma Técnica E.030 Diseño Sismorresistente,” Reglamento Nacional de Edificaciones, Ministerio de Vivienda, Construcción y Saneamiento, 2018 (in Spanish).
  10. [10] J. Soto Huaman, J. E. Alva Hurtado, and C. E. Ortiz Salas, “Evaluación de espectros de respuesta mediante el análisis unidimensional de respuesta de sitio en la ciudad de Lima,” Proc. of XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, 2018 (in Spanish).
  11. [11] Instituto Geofísico del Perú (IGP), “Sismo de Mala del 22 de Junio 2021 (M6.0) y niveles de sacudimiento del suelo,” Informe Técnico No.013-2021/IGP Ciencias de la Tierra Sólida, 2021 (in Spanish). https://sigrid.cenepred.gob.pe/sigridv3/storage/biblioteca//11341_informe-tecnico-n00013-2021-el-sismo-de-mala-del-22-de-junio-2021-m60-y-niveles-de-sacudimientos-del-suelo.pdf [Accessed June 21, 2024]
  12. [12] Z. Aguilar and J. Tarazona, “New seismicity based seismic sources and hazard model for Peru,” Proc. 18th World Conf. on Earthquake Engineering, 2024.
  13. [13] D. Calderon, C. Gonzales, Z. Aguilar, and K. Huerta, “Desarrollo de un mapa de amplificación sísmica de Lima Metropolitana y el Callao mediante correlación de múltiples variables,” Civil Engineering J. (in press).
  14. [14] C. Jiménez, N. Moggiano, S. Yauri, and M. Calvo, “Fuente sísmica del terremoto de Huacho-Perú 1966 de 8.1 Mw a partir de inversión de registros mareográficos,” Revista de Investigación de Física, Vol.19, Article No.191601401, 2016 (in Spanish). https://doi.org/10.15381/rif.v19i1.13549
  15. [15] H. Tavera and E. Buforn, “Source mechanism of earthquakes in Peru,” J. of Seismology, Vol.5, pp. 519-540, 2001. https://doi.org/10.1023/A:1012027430555
  16. [16] F. G. Fernández Flores, “Estudio sobre el sismo de 3 de octubre de 1974 en Lima metropolitana,” Bachelor’s Thesis, National University of Engineering, Peru, 1977 (in Spanish)
  17. [17] J. C. Villegas-Lanza, M. Chlieh, O. Cavalié, H. Tavera, P. Baby, J. Chire-Chira, and J.-M. Nocquet, “Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation,” J. of Geophysical Research: Solid Earth, Vol.121, No.10, pp. 7371-7394, 2016. https://doi.org/10.1002/2016JB013080
  18. [18] N. Pulido, Z. Aguilar, H. Tavera, M. Chlieh, D. Calderon, T. Sekiguchi, S. Nakai, and F. Yamazaki, “Scenario source models and strong ground motion for future mega-earthquakes: Application to Lima, central Peru,” Bulletin of the Seismological Society of America, Vol.105, No.1, pp. 368-386, 2015. https://doi.org/10.1785/0120140098
  19. [19] Global CMT, Seismic Event: 20210623230254A Near Coast of Peru, Data set, 2021. https://www.globalcmt.org [Accessed March 21, 2024]
  20. [20] S. L. Kramer and J. P. Stewart, “Geotechnical earthquake engineering,” 2nd Edition, CRC Press, 2024.
  21. [21] Servicio Nacional de Capacitación para la Industria de la Construcción, “Servicio de consultoría para ejecución del estudio caracterización geotécnica y geofísica de estaciones acelerométricas del SENCICO,” 2018 (in Spanish).
  22. [22] C. Phillips and Y. M. A. Hashash, “Damping formulation for nonlinear 1D site response analyses,” Soil Dynamics and Earthquake Engineering, Vol.29, No.7, pp. 1143-1158, 2009. https://doi.org/10.1016/j.soildyn.2009.01.004
  23. [23] N. Abrahamson and Z. Gülerce, “Regionalized ground-motion models for subduction earthquakes based on the NGA-SUB database,” Pacific Earthquake Engineering Research Center, Report No.2020/25, 2020. https://doi.org/10.55461/SSXE9861
  24. [24] G. Parker, J. Stewart, D. Boore, G. Atkinson, and B. Hassani, “NGA-subduction global ground-motion models with regional adjustment factors,” Pacific Earthquake Engineering Research Center, Report No.2020/03, 2020. https://doi.org/10.55461/INKE2546
  25. [25] G. Montalva, N. Bastías, and A. Rodriguez-Marek, “Ground-motion prediction equation for the Chilean subduction zone,” Bulletin of the Seismological Society of America, Vol.107, No.2, pp. 901-911, 2017. https://doi.org/10.1785/0120160221
  26. [26] D. Park and Y. M. A. Hashash, “Soil damping formulation in nonlinear time domain site response analysis,” J. of Earthquake Engineering, Vol.8, No.2, pp. 249-274, 2004. https://doi.org/10.1142/S1363246904001420
  27. [27] H. B. Seed and I. M. Idriss, “Soil moduli and damping factors for dynamic response analyses,” Technical Report, No.EERRC-70-10, University of California, Berkeley, 1970.
  28. [28] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature,” Geoscientific Model Development, Vol.7, pp. 1247-1250, 2014. https://doi.org/10.5194/gmd-7-1247-2014
  29. [29] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky, and V. A. Kamaev, “A survey of forecast error measures,” World Applied Sciences J., Vol.24, No.24, pp. 171-176, 2013. https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032
  30. [30] T. C. Goulet, C. B. Haselton, and J. J. Bozorgnia, “Evaluation of ground motion selection and modification methods,” PEER Report 2011/04, Pacific Earthquake Engineering Research Center, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 02, 2025