single-dr.php

JDR Vol.20 No.3 pp. 259-268
(2025)
doi: 10.20965/jdr.2025.p0259

Paper:

Quantitative Forecasting of Volcanic Ashfall Prior to the Onset of Vulcanian Eruption by Combining Transport and Dispersion Simulation with Ground Deformation Observation at Sakurajima Volcano, Japan

Masato Iguchi*,† ORCID Icon and Kyoka Ishii** ORCID Icon

*Kagoshima City
11-1 Yamashita-cho, Kagoshima, Kagoshima 892-8677, Japan

Corresponding author

**Graduate School of Science, Kyoto University
Minami-Aso, Japan

Received:
January 20, 2025
Accepted:
April 7, 2025
Published:
June 1, 2025
Keywords:
Sakurajima Volcano, inflation, quantitative forecast of volcanic ashfall, FALL3D
Abstract

The Sakurajima Volcano has experienced repeated Vulcanian eruptions since 1955 for a period of 69 years. We propose a forecasting system for volcanic ashfall prior to the onset of eruptions based on monitoring ground deformation. Inflationary strain changes are detected by strainmeters in an underground tunnel prior to eruptions. Statistical features of the ground deformation are represented by a log-logistic frequency distribution of the duration time from the onset of inflation to the onset of eruption, and the deflation volume ratio to precursory inflation. This indicates that the onset time and scale of eruption can be forecasted probabilistically. In the forecasting system, FALL3D is operated as the simulation engine, with a time interval of six minutes for 20 scenarios (four cases for onset time and five cases for scale) with probabilities given by the log-logistic distribution.

Cite this article as:
M. Iguchi and K. Ishii, “Quantitative Forecasting of Volcanic Ashfall Prior to the Onset of Vulcanian Eruption by Combining Transport and Dispersion Simulation with Ground Deformation Observation at Sakurajima Volcano, Japan,” J. Disaster Res., Vol.20 No.3, pp. 259-268, 2025.
Data files:
References
  1. [1] M. Iguchi, H. Nakamichi, and T. Tameguri, “Integrated study on forecasting volcanic hazards of Sakurajima Volcano, Japan,” J. Disaster Res., Vol.15, No.2, pp. 174-186, 2020. https://doi.org/10.20965/jdr.2020.p0174
  2. [2] T. Shimbori et al., “Quantitative tephra fall prediction with the JMA Mesoscale tracer transport model for volcanic ash: A case study of the eruption at Asama Volcano in 2009,” Pap. Meteorol. Geophys., Vol.61, pp. 13-29, 2010. https://doi.org/10.2467/mripapers.61.13
  3. [3] P. Webley and L. Mastin, “Improved prediction and tracking of volcanic ash clouds,” J. Volcanol. Geotherm. Res., Vol.186, pp. 1-9, 2009. https://doi.org/10.1016/j.jvolgeores.2008.10.022
  4. [4] A. Folch, C. Cavazzoni, A. Costa, and G. Macedonio, “An automatic procedure to forecast tephra fallout,” J. Volcanol. Geotherm. Res., Vol.177, No.4, pp. 767-777, 2008. https://doi.org/10.1016/j.jvolgeores.2008.01.046
  5. [5] L. G. Mastin et al., “A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions,” J. Volcanol. Geotherm. Res., Vol.186, pp. 10-21, 2009. https://doi.org/10.1016/j.jvolgeores.2009.01.008
  6. [6] M. Iguchi, T. Tameguri, Y. Ohta, S. Ueki, and S. Nakao, “Characteristics of volcanic activity at Sakurajima Volcano’s Showa Crater during the period 2006 to 2011,” Bull. Volcanol. Soc. Jpn., Vol.58, No.1, pp. 115-135, 2013. https://doi.org/10.18940/kazan.58.1_115
  7. [7] A. P. Poulidis, T. Takemi, and M. Iguchi, “The effect of wind and atmospheric stability on the morphology of volcanic plumes from vulcanian eruptions,” J. Geophys. Res.: Solid Earth. Vol.124, No.8, pp. 8013-8029, 2019. https://doi.org/10.1029/2018JB016958
  8. [8] K. Ishii and M. Iguchi, “Statistical analysis of the ground deformation of Vulcanian explosions at Sakurajima Volcano, Japan,” J. Volcanol. Geotherm. Res., Vol.455, Article No.108185, 2024. https://doi.org/10.1016/j.jvolgeores.2024.108185
  9. [9] M. Iguchi, “Method for real-time evaluation of discharge rate of volcanic ash – Case study on intermittent eruptions at the Sakurajima Volcano, Japan –,” J. Disaster Res., Vol.11, No.1, pp. 4-14, 2016. https://doi.org/10.20965/jdr.2016.p0004
  10. [10] https://www.data.jma.go.jp/suishin/cgi-bin/catalogue/make_product_page.cgi?id=MesModel [Accessed January 17, 2025]
  11. [11] Y. Tamura, T. Sato, M. Ooe, and M. Ishiguro, “A procedure for tidal analysis with a Bayesian information criterion,” Geophys. J. Int., Vol.104, No.3, pp. 507-516, 1991. https://doi.org/10.1111/j.1365-246X.1991.tb05697.x
  12. [12] C. B. Connor, R. S. J. Sparks, R. M. Mason, C. Bonadonna, and S. R. Young, “Exploring links between physical and probabilistic models of volcanic eruptions: The Soufriere Hills Volcano, Montserrat,” Geophys. Res. Lett., Vol.30, No.13, Article No.1701, 2003. https://doi.org/10.1029/2003GL017384
  13. [13] S. F. L. Watt, T. A. Mather, and D. M. Pyle, “Vulcanian explosion cycles: Patterns and predictability, ” Geology, Vol.35, No.9, pp. 839-842, 2007. https://doi.org/10.1130/G23562A.1
  14. [14] M. Iguchi, H. Nakamichi, K. Takishita, and A. P. Poulidis, “Continuously operable simulator and forecasting the deposition of volcanic ash from prolonged eruptions at Sakurajima Volcano, Japan,” J. Disaster Res., Vol.17, No.5, pp. 805-817, 2022. https://doi.org/10.20965/jdr.2022.p0805
  15. [15] B. R. Morton, G. I. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. Lond. A, Vol.A234, No.1196, pp. 1-23, 1956. https://doi.org/10.1098/rspa.1956.0011
  16. [16] A. Folch et al., “FALL3D-8.0: A computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics,” Geosci. Model Dev., Vol.13, No.3, pp. 1431-1458, 2020. https://doi.org/10.5194/gmd-13-1431-2020
  17. [17] A. P. Poulidis, T. Takemi, M. Iguchi, and I. A. Renfrew, “Orographic effects on the transport and deposition of volcanic ash: A case study of Mt. Sakurajima, Japan,” J. Geophys. Res.: Atmospheres, Vol.122, pp. 9332-9350, 2017. https://doi.org/10.1002/2017JD026595
  18. [18] W. C. Skamarock et al., “A model description of the advanced research WRF model version 4 (No.980 NCAR/TN-556+STR),” Technical Report, National Center for Atmospheric Research, 2019. https://doi.org/10.5065/1dfh-6p97
  19. [19] https://www.data.jma.go.jp/vois/data/report/volinfo/VG20240729170200_506.html [Accessed January 17, 2025]
  20. [20] https://www.data.jma.go.jp/obd/stats/etrn/upper/view/daily_uwd.php?year=2024&month=7&day=29&hour=9&atm=&point=47827&view= [Accessed January 17, 2025]
  21. [21] K. Takishita, A.-P. Poulidis, and M. Iguchi, “In-situ measurement of tephra deposit load based on a disdrometer network at Sakurajima Volcano, Japan,” J. Volcanol. Geotherm. Res., Vol.421, Article No.107442, 2022. https://doi.org/10.1016/j.jvolgeores.2021.107442
  22. [22] A. R. García et al., “An automated ash dispersion forecast system: Case study Popocatépetl volcano, Mexico,” J. Appl. Volcanol., Vol.12, Article No.9, 2023. https://doi.org/10.1186/s13617-023-00135-4
  23. [23] K. Hotta and M. Iguchi, “Tilt and strain change during the explosion at Minami-dake, Sakurajima, on November 13, 2017,” Earth Planets Space, Vol.73, Article No.70, 2021. https://doi.org/10.1186/s40623-021-01392-6
  24. [24] M. Iguchi, T. Yamada, and T. Tameguri, “Sequence of volcanic activity of Sakurajima Volcano, Japan, as revealed by non-eruptive deflation,” Front.Earth Sci., Vol.10, Article No.727909, 2022. https://doi.org/10.3389/feart.2022.727909
  25. [25] T. Kobayashi, “Geology of Sakurajima: A review,” Bull. Volcanol. Soc. Jpn., Vol.27, pp. 277-292, 1982 (in Japanese). https://doi.org/10.5382/GB.34.13
  26. [26] Kagoshima City, “Kagoshima city regional disaster prevention plan, edition for volcanic disaster measure.” https://www.city.kagoshima.lg.jp/kikikanri/kurashi/bosai/bosai/bosai/documents/2_r6h_kazantaisakuhen.pdf [Accessed January 17, 2025]
  27. [27] K. Ohno, Y. Ohta, N. Takamatsu, H. Munekane, and M. Iguchi, “Real-time modeling of transient crustal deformation through the quantification of uncertainty deduced from GNSS data,” Earth Planets Space, Vol.76, Article No.140, 2024. https://doi.org/10.1186/s40623-024-02068-7
  28. [28] S. Biass et al., “Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy,” Bull. Volcanol., Vol.78, Article No.37, 2016. https://doi.org/10.1007/s00445-016-1028-1
  29. [29] J. Selva et al., “Sensitivity test and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy,” J. Volcanol. Geotherm. Res., Vol.351, pp. 1-28, 2018. https://doi.org/10.1016/j.jvolgeores.2017.11.024

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 31, 2025