single-dr.php

JDR Vol.18 No.8 pp. 895-910
(2023)
doi: 10.20965/jdr.2023.p0895

Paper:

Estimation of Spatial Snowpack Properties in a Snow-Avalanche Release Area: An Extreme Case on Mt. Nodanishoji, Japan, in 2021

Yuta Katsuyama*,† ORCID Icon, Takafumi Katsushima* ORCID Icon, Satoru Adachi**, and Yukari Takeuchi*

*Tohkamachi Experimental Station, Forestry and Forest Products Research Institute
614-9 Kawaharacho, Tokamachi, Niigata 948-0013, Japan

Corresponding author

**Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Resilience
Shinjo, Japan

Received:
May 15, 2023
Accepted:
July 31, 2023
Published:
December 1, 2023
Keywords:
extreme snow avalanche, snowpack stability, unmanned aerial vehicle (UAV)
Abstract

An extreme dry-slab snow avalanche occurred on January 10, 2021, at Mt. Nodanishoji, Gifu, Japan, during a heavy snowfall. The avalanche ran down a horizontal distance of approximately 2,800 m and damaged trees and infrastructures. This was estimated to be the second largest recorded avalanche in Japan. However, physical snowpack properties and their vertical profiles and spatial distribution, which caused the avalanche, were not addressed in the release area immediately following the avalanche, mainly due to unsafe and lousy weather conditions. Based on a snow depth distribution observed by an unmanned aerial vehicle and a numerical snowpack simulation in the avalanche release area, the spatial distributions of the mechanical snowpack stability and slab mass and their temporal evolution were estimated in this study. The procedure was validated by comparing the calculation results with the observed snowpit and spatial snow depth data. The results indicated that two heavy snowfall events, approximately 3 and 10 days before the avalanche onset, generated two different weak layers made of precipitation particles and associated slabs above the weak layers. The older weak layer was only generated on the northward slope due to its low temperature, whereas the newer layer was predominant over the avalanche release area. The procedure employed in this study is expected to be applied to other avalanche cases in the future.

Cite this article as:
Y. Katsuyama, T. Katsushima, S. Adachi, and Y. Takeuchi, “Estimation of Spatial Snowpack Properties in a Snow-Avalanche Release Area: An Extreme Case on Mt. Nodanishoji, Japan, in 2021,” J. Disaster Res., Vol.18 No.8, pp. 895-910, 2023.
Data files:
References
  1. [1] Japan Avalanche Network, “JAN MAGAZINES [vol.10]: Avalanche at Mt. Nodanishoji,” 2021 (in Japanese). https://snow.nadare.jp/magazines/2021/000031.html [Accessed June 22, 2022]
  2. [2] D. McClung and P. Schaerer, “The Avalanche Handbook,” 3rd Edition, Mountaineers Books, 2006.
  3. [3] T. Katsushima et al., “Characteristics of deposition depth in dry snow slab avalanche at Mt. Nodanishoji,” Summaries of JSSI & JSSE Joint Conf. on Snow and Ice Research 2021, p. 170, 2021 (in Japanese). https://doi.org/10.14851/jcsir.2021.0_170
  4. [4] M. Christen, P. Bartelt, and J. Kowalski, “Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results,” Ann. Glaciol., Vol.51, No.54, pp. 161-168, 2010. https://doi.org/10.3189/172756410791386553
  5. [5] Y. Takeuchi, H. Torita, K. Nishimura, and H. Hirashima, “Study of a large-scale dry slab avalanche and the extent of damage to a cedar forest in the Makunosawa valley, Myoko, Japan,” Ann. Glaciol., Vol.52, No.58, pp. 119-128, 2011. https://doi.org/10.3189/172756411797252059
  6. [6] Eidgenössische Institut für Schnee- und Lawinenforschung, Weißfluhjoch/Davos, “Schnee und Lawinen in den Schweizeralpen Winter 1967/68,” Eidgenössische Drucksachen- und Materialzentrale, 1969.
  7. [7] T. Braun et al., “Seismic signature of the deadly snow avalanche of January 18, 2017, at Rigopiano (Italy),” Sci. Rep., Vol.10, 18563, 2020. https://doi.org/10.1038/s41598-020-75368-z
  8. [8] T. Piacentini, M. Calista, U. Crescenti, E. Miccadei, and N. Sciarra, “Seismically induced snow avalanches: The central Italy case,” Front. Earth Sci., Vol.8, 599611, 2020. https://doi.org/10.3389/feart.2020.599611
  9. [9] M. Calista, E. Miccadei, T. Piacentini, and N. Sciarra, “Morphostructural, meteorological and seismic factors controlling landslides in weak rocks: The case studies of Castelnuovo and Ponzano (North East Abruzzo, Central Italy),” Geosciences, Vol.9, No.3, 122, 2019. https://doi.org/10.3390/geosciences9030122
  10. [10] G. Furdada et al., “The avalanche of Les Fonts d’Arinsal (Andorra): An example of a pure powder, dry snow avalanche,” Geosciences, Vol.10, No.4, 126, 2020. https://doi.org/10.3390/geosciences10040126
  11. [11] J. Schweizer, J. B. Jamieson, and M. Schneebeli, “Snow avalanche formation,” Rev. Geophys., Vol.41, No.4, 1016, 2003. https://doi.org/10.1029/2002RG000123
  12. [12] L. Viallon-Galinier, P. Hagenmuller, B. Reuter, and N. Eckert, “Modelling snowpack stability from simulated snow stratigraphy: Summary and implementation examples,” Cold Reg. Sci. Technol., Vol.201, 103596, 2022. https://doi.org/10.1016/j.coldregions.2022.103596
  13. [13] J. B. Jamieson and C. D. Johnston, “Refinements to the stability index for skier-triggered dry-slab avalanches,” Ann. Glaciol., Vol.26, pp. 296-302, 1998. https://doi.org/10.3189/1998AoG26-1-296-302
  14. [14] J. Gaume, A. van Herwijnen, G. Chambon, N. Wever, and J. Schweizer, “Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation,” Cryosphere, Vol.11, pp. 217-228, 2017. https://doi.org/10.5194/tc-11-217-2017
  15. [15] B. Richter, J. Schweizer, M. W. Rotach, and A. van Herwijnen, “Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK,” Cryosphere, Vol.13, No.12, pp. 3353-3366, 2019. https://doi.org/10.5194/tc-13-3353-2019
  16. [16] B. Reuter and J. Schweizer, “Describing snow instability by failure initiation, crack propagation, and slab tensile support,” Geophys. Res. Lett., Vol.45, No.14, pp. 7019-7027, 2018. https://doi.org/10.1029/2018GL078069
  17. [17] P. Bartelt and M. Lehning, “A physical SNOWPACK model for the Swiss avalanche warning: Part I: Numerical model,” Cold Reg. Sci. Technol., Vol.35, No.3, pp. 123-145, 2002. https://doi.org/10.1016/S0165-232X(02)00074-5
  18. [18] L. Quéno et al., “Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts,” Cryosphere, Vol.10, No.4, pp. 1571-1589, 2016. https://doi.org/10.5194/tc-10-1571-2016
  19. [19] H. Hirashima, “Numerical snowpack model simulation schemes for avalanche prediction in Japan,” Bull. Glaciol. Res., Vol.37S, pp. 31-41, 2019. https://doi.org/10.5331/bgr.18sw02
  20. [20] B. Richter, J. Schweizer, M. W. Rotach, and A. van Herwijnen, “Modeling spatially distributed snow instability at a regional scale using Alpine3D,” J. Glaciol., Vol.67, No.266, pp. 1147-1162, 2021. https://doi.org/10.1017/jog.2021.61
  21. [21] M. Lehning et al., “ALPINE3D: A detailed model of mountain surface processes and its application to snow hydrology,” Hydrol. Process., Vol.20, No.10, pp. 2111-2128, 2006. https://doi.org/10.1002/hyp.6204
  22. [22] R. A. Houze Jr., “Orographic effects on precipitating clouds,” Rev. Geophys., Vol.50, No.1, RG1001, 2012. https://doi.org/10.1029/2011RG000365
  23. [23] Y. Bühler et al., “Snow depth mapping in high-alpine catchments using digital photogrammetry,” Cryosphere, Vol.9, No.1, pp. 229-243, 2015. https://doi.org/10.5194/tc-9-229-2015
  24. [24] L. A. Eberhard et al., “Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping,” Cryosphere, Vol.15, No.1, pp. 69-94, 2021. https://doi.org/10.5194/tc-15-69-2021
  25. [25] J. Goetz and A. Brenning, “Quantifying Uncertainties in Snow Depth Mapping from Structure from Motion Photogrammetry in an Alpine Area,” Water Resour. Res., Vol.55, No.9, pp. 7772-7783, 2019. https://doi.org/10.1029/2019WR025251
  26. [26] C. Vögeli, M. Lehning, N. Wever, and M. Bavay, “Scaling Precipitation Input to Spatially Distributed Hydrological Models by Measured Snow Distribution,” Front. Earth Sci., Vol.4, 108, 2016. https://doi.org/10.3389/feart.2016.00108
  27. [27] H. Obanawa, S. Sakanoue, and T. Yagi, “Effectiveness of RTK-UAV measurements for estimating snow depth distribution,” Trans. Jpn. Geomorphol. Union, Vol.41, No.1, pp. 15-26, 2020 (in Japanese).
  28. [28] Japan Meteorological Agency (in Japanese). https://www.data.jma.go.jp/obd/stats/etrn/view/nml_amd_3m.php?prec_no=52&block_no=1306&year=&month=&day=&view= [Accessed July 12, 2022]
  29. [29] T. Takasu and A. Yasuda, “Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB,” Int. Symp. on GPS/GNSS, 2009.
  30. [30] J. Ishida et al., “ASUCA: The JMA Operational Non-hydrostatic Model,” J. Meteorol. Soc. Jpn., Ser. II, Vol.100, No.5, pp. 825-846, 2022. https://doi.org/10.2151/jmsj.2022-043
  31. [31] Y. Ikuta, T. Fujita, Y. Ota, and Y. Honda, “Variational Data Assimilation System for Operational Regional Models at Japan Meteorological Agency,” J. Meteorol. Soc. Jpn., Ser. II, Vol.99, No.6, pp. 1563-1592, 2021. https://doi.org/10.2151/jmsj.2021-076
  32. [32] J. Kondo, T. Nakamura, and T. Yamazaki, “Estimation of the solar and downward atmospheric radiation,” Tenki, Vol.38, No.1, pp. 41-48, 1991 (in Japanese).
  33. [33] Y. Kominami, H. Ohno, and O. Nagata, “Estimating downward long-wave radiation at the surface from MSM-GPV data (2),” Proc. of 2nd Int. Conf. on Information Science (ISAM 2012), p. 205, 2012.
  34. [34] J. M. Forthofer, B. W. Butler, and N. S. Wagenbrenner, “A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements,” Int. J. Wildl. Fire, Vol.23, No.7, pp. 969-981, 2014. https://doi.org/10.1071/WF12089
  35. [35] T. Matsuo and Y. Sasyo, “Non-melting phenomena of snowflakes observed in subsaturated air below freezing level,” J. Meteorol. Soc. Jpn., Ser. II, Vol.59, No.1, pp. 26-32, 1981. https://doi.org/10.2151/jmsj1965.59.1_26
  36. [36] O. T. Farouki, “Thermal properties of soils,” CRREL Monograph 81-1, Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers, 1981.
  37. [37] Y. Katsuyama, M. Inatsu, and T. Shirakawa, “Response of snowpack to +2°C global warming in Hokkaido, Japan,” J. Glaciol., Vol.66, No.255, pp. 83-96, 2020. https://doi.org/10.1017/jog.2019.85
  38. [38] T. Hirota, J. W. Pomeroy, R. J. Granger, and C. P. Maule, “An extension of the force-restore method to estimating soil temperature at depth and evaluation for frozen soils under snow,” J. Geophys. Res. Atmos., Vol.107, No.D24, 4767, 2002. https://doi.org/10.1029/2001JD001280
  39. [39] D. T. Reindl, W. A. Beckman, and J. A. Duffie, “Diffuse fraction correlations,” Sol. Energy, Vol.45, No.1, pp. 1-7, 1990. https://doi.org/10.1016/0038-092X(90)90060-P
  40. [40] R. Perez, P. Ineichen, R. Seals, J. Michalsky, and R. Stewart, “Modeling daylight availability and irradiance components from direct and global irradiance,” Sol. Energy, Vol.44, No.5, pp. 271-289, 1990. https://doi.org/10.1016/0038-092X(90)90055-H
  41. [41] M. Lehning, P. Bartelt, B. Brown, and C. Fierz, “A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation,” Cold Reg. Sci. Technol., Vol.35, No.3, pp. 169-184, 2002. https://doi.org/10.1016/S0165-232X(02)00072-1
  42. [42] K. Nakamura, “Improvement of a Potential Estimation Algorithm for Surface Avalanches Caused by Snowfall During a Cyclone,” J. Disaster Res., Vol.17, No.6, pp. 956-975, 2022. https://doi.org/10.20965/jdr.2022.p0956
  43. [43] S. Colbeck et al., “The International Classification for Seasonal Snow on the Ground,” The International Commission on Snow and Ice of the International Association of Scientific Hydrology and International Glaciological Society, 1991.
  44. [44] J. Gaume, G. Chambon, N. Eckert, M. Naaim, and J. Schweizer, “Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area,” Cryosphere, Vol.9, No.2, pp. 795-804, 2015. https://doi.org/10.5194/tc-9-795-2015
  45. [45] M. Lehning, P. Bartelt, B. Brown, C. Fierz, and P. Satyawali, “A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure,” Cold Reg. Sci. Technol., Vol.35, No.3, pp. 147-167, 2002. https://doi.org/10.1016/S0165-232X(02)00073-3
  46. [46] K. W. Birkeland, R. F. Johnson, and D. S. Schmidt, “Near-Surface Faceted Crystals Formed by Diurnal Recrystallization: A Case Study of Weak Layer Formation in the Mountain Snowpack and its Contribution to Snow Avalanches,” Arct. Alp. Res., Vol.30, No.2, pp. 200-204, 1998. https://doi.org/10.1080/00040851.1998.12002892
  47. [47] K. W. Birkeland, “Spatial patterns of snow stability throughout a small mountain range,” J. Glaciol., Vol.47, No.157, pp. 176-186, 2001. https://doi.org/10.3189/172756501781832250
  48. [48] Y. Takano, Y. Tachibana, and K. Iwamoto, “Influences of Large-scale Atmospheric Circulation and Local Sea Surface Temperature on Convective Activity over the Sea of Japan in December,” SOLA, Vol.4, pp. 113-116, 2008. https://doi.org/10.2151/sola.2008-029
  49. [49] Y. Katsuyama, T. Katsushima, S. Adachi, and Y. Takeuchi, “Spatial snowpack properties in a snow-avalanche release area: An extreme dry-slab avalanche case on Mt. Nodanishoji, Japan, in 2021,” Nat. Hazards Earth Syst. Sci. Discuss. [preprint], 2023. https://doi.org/10.5194/nhess-2023-5

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Feb. 19, 2024