Paper:
Conduit Flow Dynamics During the 1986 Sub-Plinian Eruption at Izu-Oshima Volcano
Tomofumi Kozono*1,*2,, Hidemi Ishibashi*3, Satoshi Okumura*4, and Takahiro Miwa*2
*1Department of Geophysics, Graduate School of Science, Tohoku University
6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
Corresponding author
*2National Research Institute for Earth Science and Disaster Resilience (NIED), Tsukuba, Japan
*3Department of Geoscience, Faculty of Science, Shizuoka University, Shizuoka, Japan
*4Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
We investigated conduit flow dynamics during the 1986 sub-Plinian eruption of Izu-Oshima volcano, Japan, using a 1-D steady conduit flow model. Following observations that the magma plumbing system beneath Izu-Oshima, characterized by the feeding of a dyke, generated a fissure-type sub-Plinian eruption, we considered a dyke-like conduit geometry by applying a pseudo-dyke conduit with an ellipsoidal horizontal cross-section. Under appropriate parameter settings constrained by geological, petrological, and geophysical observations, we identified a conduit geometry that enables steady solutions of a conduit flow that generates the sub-Plinian eruption. A dyke-like conduit geometry allows us to widen the range of geometric parameters of the solution. We found that the distribution of magma overpressure in the conduit strongly depends on conduit geometry. When the conduit geometry is composed of deeper and shallower dykes with large and small aspect ratios, respectively, localized overpressurization occurs in the region before magma fragmentation. This overpressurization in the dyke-like conduit may induce a characteristic crustal deformation similar to that caused by a vertical tensile fault. It is crucial to consider the effects of conduit flow with a dyke-like geometry on deformation for precise monitoring of eruption sequences based on geodetic signals in future eruptions at Izu-Oshima volcano.
- [1] L. Wilson, R. S. J. Sparks, and G. P. L. Walker, “Explosive volcanic eruptions: IV. The control of magma properties and conduit geometry on eruption column behavior,” Geophys. J. R. Astron. Soc., Vol.63, pp. 117-148, 1980.
- [2] R. S. J. Sparks, “The dynamics of bubble formation and growth in magmas: a review and analysis,” J. Volcanol. Geotherm. Res., Vol.3, pp. 1-37, 1978.
- [3] O. Melnik, “Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity,” Bull. Volcanol., Vol.62, pp. 153-170, doi: 10.1007/s004450000072, 2000.
- [4] T. Koyaguchi, “An analytical study for 1-dimensional steady flow in volcanic conduits,” J. Volcanol. Geotherm. Res., Vol.143, pp. 29-52, doi: 10.1016/j.jvolgeores.2004.09.009, 2005.
- [5] M. Coltelli, P. Carlo, and L. Vezzoli, “Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy,” Geology, Vol.26, No.12, pp. 1095-1098, 1998.
- [6] J. E. Sable, B. F. Houghton, C. J. N. Wilson, and R. J. Carey, “Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits,” Special Publications of International Association of Volcanology and Chemistry of the Earth’s Interior, pp. 129-154, doi: 10.1144/IAVCEl002.7, 2009.
- [7] P. Moitra, H. M. Gonnermann, B. F. Houghton, and C. S. Tiwary, “Fragmentation and Plinian eruption of crystallizing basaltic magma,” Earth Planet. Sci. Lett., Vol.500, pp. 97-104, doi: 10.1016/j.epsl.2018.08.003, 2018.
- [8] F. Arzilli, G. La Spina, M. R. Burton, M. Polacci, N. Le Gall, M. E. Hartley, D. Di Genova, B. Cai, N. T. Vo, E. C. Bamber, S. Nonni, R. Atwood, E. W. Llewellin, R. A. Brooker, H. M. Mader, and P. D. Lee, “Magma fragmentation in highly explosive basaltic eruptions induced by rapid crystallization,” Nature Geoscience, Vol.12, No.12, pp. 1023-1028, doi: 10.1038/s41561-019-0468-6, 2019.
- [9] G. La Spina, A. B. Clarke, M. de’ Michieli Vitturi, M. Burton, C. M. Allison, K. Roggensack, and F. Alfano, “Conduit dynamics of highly explosive basaltic eruptions: The 1085 CE Sunset Crater sub-Plinian events,” J. Volcanol. Geotherm. Res., Vol.387, 106658, doi: 10.1016/j.jvolgeores.2019.08.001, 2019.
- [10] Japan Meteorological Agency, “National Catalogue of the active volcanoes in Japan; 58, Izu-Oshima,” 2013.
- [11] S. Massaro, A. Costa, and R. Sulpizio, “Evolution of the magma feeding system during a Plinian eruption: the case of Pomici di Avellino eruption of Somma–Vesuvius, Italy,” Earth Planet. Sci. Lett., Vol.482, pp. 545-555, doi: 10.1016/j.epsl.2017.11.030, 2018.
- [12] P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe, “Generic mapping tools: improved version released,” EOS Trans. AGU, Vol.94, No.45, pp. 409-410, doi: 10.1002/2013EO450001, 2013.
- [13] K. Endo, T. Chiba, H. Taniguchi, M. Sumita, S. Tachikawa, T. Miyahara, R. Uno, and N. Miyaji, “Tephrochronological study on the 1986–1987 eruptions of Izu-Oshima volcano, Japan,” Bull. Volcanol. Soc. Jpn., Vol.33, pp. S32-S51, doi: 10.18940/kazanc.33.SPCL_S32, 1988 (in Japanese).
- [14] Japan Meteorological Agency, “Izu-Oshima 1986 Eruption,” Report of Volcanic Phenomena Investigation at the Time of Disaster 1986, Tokyo, 1987 (in Japanese).
- [15] K. Sakaguchi, A. Takada, K. Uto, and T. Soya, “The 1986 eruption and products of Izu-Oshima volcano, Japan,” Bull. Volcanol. Soc. Jpn., Vol.33, pp. S20-S31, doi: 10.18940/kazanc.33.SPCL_S20, 1988 (in Japanese).
- [16] K. Mannen, “Total grain size distribution of a mafic subplinian tephra, TB-2, from the 1986 Izu-Oshima eruption, Japan: An estimation based on a theoretical model of tephra dispersal,” J. Volcanol. Geotherm. Res., Vol.155, No.1-2, pp. 1-17, doi: 10.1016/j.jvolgeores.2006.02.004, 2006.
- [17] T. Fujii, S. Aramaki, S. Kaneko, T. Ozawa, Y. Kawanabe, and T. Fukuoka, “Petrology of the Lavas and Ejecta of the November, 1986 eruption of Izu-Oshima volcano,” Bull. Volcanol. Soc. Jpn., Vol.33, pp. S234-S254, doi: 10.18940/kazanc.33.SPCL_S297, 1988 (in Japanese).
- [18] H. Ishibashi and R. Oida, “The effects of temperature on decompression-driven crystallization and eruption dynamics of mafic magma: A case study of the 1986 basaltic andesite melt from Izu-Oshima volcano, Japan,” Geosci. Repts. Shizuoka Univ., Vol.45, pp. 55-66, doi: 10.1016/j.epsl.2008.03.038, 2018.
- [19] G. A. R. Gualda, M. S. Ghiorso, R. V. Lemons, and T. L. Carley, “rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems,” J. Petrol., Vol.53, No.5, pp. 875-890, doi: 10.1093/petrology/egr080, 2012.
- [20] H. Mikada, H. Watanabe, and S. Sakashita, “Evidence for subsurface magma bodies beneath Izu-Oshima volcano inferred from a seismic scattering analysis and possible interpretation of the magma plumbing system of the 1986 eruptive activity,” Phy. Earth Planet. Inter., Vol.104, No.1-3, pp. 257-269, doi: 10.1016/S0031-9201(97)00060-5, 1997.
- [21] M. Hamada, T. Kawamoto, E. Takahashi, and T. Fujii, “Polybaric degassing of island arc low-K tholeiitic basalt magma recorded by OH concentrations in Ca-rich plagioclase,” Earth Planet. Sci. Lett., Vol.308, No.1-2, pp. 259-266, doi: 10.1016/j.epsl.2011.06.005, 2011.
- [22] T. Kuritani, A. Yamaguchi, S. Fukumitsu, M. Nakagawa, A. Matsumoto, and T. Yokoyama, “Magma plumbing system at Izu-Oshima volcano, Japan: constraints from petrological and geochemical analyses,” Front. Earth Sci., Vol.6, 178, doi: 10.3389/feart.2018.00178, 2018.
- [23] M. Hashimoto and T. Tada, “Crustal deformations associated with the 1986 fissure eruption of Izu-Oshima volcano, Japan, and their tectonic significance,” Phy. Earth Planet. Inter., Vol.60, No.1-4, pp. 324-338, doi: doi.org/10.1016/0031-9201(90)90272-Y, 1990.
- [24] A. Costa, O. Melnik, and R. S. J. Sparks, “Controls of conduit geometry and wallrock elasticity on lava dome eruptions,” Earth Planet. Sci. Lett., Vol.260, No.1-2, pp. 137-151, doi: 10.1016/j.epsl.2007.05.024, 2007.
- [25] A. Costa, O. Melnik, and R. S. J. Sparks, “Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions,” Earth Planet. Sci. Lett., Vol.288, No.3-4, pp. 455-462, doi: 10.1016/j.epsl.2009.10.006, 2009.
- [26] M. Hamada and T. Fujii, “H2O-rich island arc low-K tholeiite magma inferred from Ca-rich plagioclase-melt inclusion equilibria,” Geochem. J., Vol.41, No.6, pp. 437-461, doi: 10.2343/geochemj.41.437, 2007.
- [27] T. Kozono and T. Koyaguchi, “Effects of gas escape and crystallization on the complexity of conduit flow dynamics during lava dome eruptions,” J. Geophys. Res., Vol.117, No.B8, doi: 10.1029/2012JB009343, 2012.
- [28] H. M. Mader, E. W. Llewellin, and S. P. Mueller, “The rheology of two-phase magmas: A review and analysis,” J. Volcanol. Geotherm. Res., Vol.257, pp. 135-158, doi: 10.1016/j.jvolgeores.2013.02.014, 2013.
- [29] A. Costa, “Viscosity of high crystal content melts: dependence on solid fraction,” Geophys. Res. Lett., Vol.32, L22308, doi: 10.1029/2005GL024303, 2005.
- [30] E. W. Llewellin, H. M. Mader, and S. D. R. Wilson, “The rheology of a bubbly liquid,” Proc. R. Soc. Lond. A, Vol.458, pp. 987-1016, doi: 10.1098/rspa.2001.0924, 2002.
- [31] P. Papale, “Strain-induced magma fragmentation in explosive eruptions,” Nature, Vol.397, pp. 425-428, doi: 10.1038/17109, 1999.
- [32] D. Giordano, J. K. Russell, and D. B. Dingwell, “Viscosity of magmatic liquids: a model,” Earth Planet. Sci. Lett., Vol.271, No.1-4, pp. 123-134, doi: 10.1016/j.epsl.2008.03.038, 2008.
- [33] A. W. Woods and T. Koyaguchi, “Transitions between explosive and effusive eruptions of silicic magmas,” Nature, Vol.370, pp. 641-644, doi: 10.1038/370641a0, 1994.
- [34] O. Melnik and R. S. J. Sparks, “Nonlinear dynamics of lava dome extrusion,” Nature, Vol.402, pp. 37-41, doi: 10.1038/46950, 1999.
- [35] H. Ishibashi and H. Sato, “Bingham fluid behavior of plagioclase-bearing basaltic magma: Reanalyses of laboratory viscosity measurements for Fuji 1707 basalt,” J. Mineral. Petrol. Sci., Vol.105, pp. 334-339, doi: 10.2465/jmps.100611, 2010.
- [36] T. Kozono and T. Koyaguchi, “Effects of relative motion between gas and liquid on 1-dimensional steady flow in silicic volcanic conduits: 1. an analytical method,” J. Volcanol. Geotherm. Res., Vol.180, pp. 21-36, doi: 10.1016/j.jvolgeores.2008.11.006, 2009.
- [37] A. Frontoni, A. Costa, A. Vona, and C. Romano, “A comprehensive database of crystal-bearing magmas for the calibration of a rheological model,” Scientific Data, Vol.9, No.1, 247, doi: 10.1038/s41597-022-01363-w, 2022.
- [38] E. A. Vedeneeva, O. E. Melnik, A. A. Barmin, and R. S. J. Sparks, “Viscous dissipation in explosive volcanic flows,” Geophys. Res. Lett., Vol.32, No.5, L05303, doi: 10.1029/2004GL020954, 2005.
- [39] A. Costa, O. Melnik, and E. Vedeneeva, “Thermal effects during magma ascent in conduits,” J. Geophys. Res., Vol.112, No.B12, doi: 10.1029/2007JB004985, 2007.
- [40] M. Ohashi, M. Ichihara, B. Kennedy, and D. Gravley, “Comparison of Bubble Shape Model Results With Textural Analysis: Implications for the Velocity Profile Across a Volcanic Conduit,” J. Geophys. Res., Vol.126, No.6, e2021JB021841, doi: 10.1029/2021JB021841, 2021.
- [41] T. Kozono, H. Ueda, T. Ozawa, T. Koyaguchi, E. Fujita, A. Tomiya, and Y. J. Suzuki, “Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations,” Bull. Volcanol., Vol.75, No.3, 695, doi: 10.1007/s00445-013-0695-4, 2013.
- [42] Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am., Vol.75, No.4, pp. 1135-1154, doi: 10.1785/BSSA0750041135, 1985.
- [43] E. Yamamoto, T. Kumagai, S. Shimada, and E. Fukuyama, “Crustal tilt movements associated with the 1986-1987 volcanic activities of Izu-Oshima Volcano-result of continuous crustal tilt observation at Gojinka and Habu,” Bull. Volcanol. Soc. Jpn., pp. S170-S178, doi: 10.4294/jpe1952.39.165, 1988 (in Japanese).
- [44] E. Yamamoto, Y. Okada, and T. Ohkubo, “Ground tilt changes preceding the 1989 submarine eruption off Ito, Izu Peninsula,” J. Phys. Earth., Vol.39, No.1, pp. 165-176, doi: 10.4294/jpe1952.39.165, 1991.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.