single-dr.php

JDR Vol.17 No.3 pp. 475-486
(2022)
doi: 10.20965/jdr.2022.p0475

Paper:

The Effect of Incorporation of Embankment Information for Flood Simulation of the Gin River, Sri Lanka

J. M. M. U. Jayapadma*, Kazuyoshi Souma**,†, Hiroshi Ishidaira**, Jun Magome**, and T. N. Wickramaarachchi***

*Special Educational Program on River Basin Environmental Science,
Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

**Interdisciplinary Centre for River Basin Environment, University of Yamanashi, Yamanashi, Japan

Corresponding author

***Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Galle, Sri Lanka

Received:
August 27, 2021
Accepted:
December 6, 2021
Published:
April 1, 2022
Keywords:
flood modelling, embankment information, RRI, Gin River
Abstract

As flooding is inevitable and becoming increasingly frequent, efficient flood management strategies should be developed to manage floods, especially in developing countries. Rainfall-Runoff-Inundation (RRI) model, which is based on a diffusive wave model, was applied to Gin River Basin, Sri Lanka using daily rainfall data. The RRI model was calibrated and validated for three past flood events (2003, 2016, and 2017) based on observed discharge data and inundation maps developed from ground survey data and satellite images. The Nash–Sutcliffe efficiency (NSE) values for river discharge obtained at the downstream gauging station were greater than 0.7 during both the calibration and validation experiments. Simulated inundation data showed good agreement with the limited observational records. The Critical Success Index (CSI) value for inundated extent in large flood event (May 2017) within downstream was greater than 0.3. Incorporation of embankment information significantly improved the accuracy of the simulation of inundation extent during large flood events (May 2017). The CSI value without embankment information for large flood event (May 2017) within downstream decreased to around 0.1. On the other hand, the embankment information was less useful for smaller flood events caused by less extreme rainfall. Inclusion of embankment information for large flood events enhanced the model performance, thus ensuring the availability of accurate inundation information for efficient flood risk planning and management in the basin.

Cite this article as:
J. M. M. U. Jayapadma, Kazuyoshi Souma, Hiroshi Ishidaira, Jun Magome, and T. N. Wickramaarachchi, “The Effect of Incorporation of Embankment Information for Flood Simulation of the Gin River, Sri Lanka,” J. Disaster Res., Vol.17, No.3, pp. 475-486, 2022.
Data files:
References
  1. [1] Asian Disaster Reduction Center, “Asian Disaster Reduction Center Natural Disaster Data Book 2019 An Analytical Overview,” 2019, https://www.emdat.be [accessed April 3, 2021]
  2. [2] U. C. Nkwunonwo, M. Whitworth, and B. Baily, “A review of the current status of flood modelling for urban flood risk management in the developing countries,” Scientific African, Vol.7, e00269, doi: 10.1016/j.sciaf.2020.e00269, 2020.
  3. [3] Y. Hirabayashi et al., “Global flood risk under climate change,” Nat. Clim. Chang., Vol.3, No.9, pp. 816-821, doi: 10.1038/nclimate1911, 2013.
  4. [4] T. G. Huntington, “Evidence for intensification of the global water cycle: Review and synthesis,” J. Hydrol., Vol.319, Nos.1-4, pp. 83-95, doi: 10.1016/j.jhydrol.2005.07.003, 2006.
  5. [5] P. G. Samuels, “A European Perspective on Current Challenges in the Analysis of Inland Flood Risks,” Flood Risk Management: Hazards, Vulnerability and Mitigation Measures, Springer Netherlands, pp. 21-34, doi: 10.1007/978-1-4020-4598-1_2, 2007.
  6. [6] M. B. Abbott, J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen, “An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system,” J. Hydrol., Vol.87, Nos.1-2, pp. 61-77, doi: 10.1016/0022-1694(86)90115-0, 1986.
  7. [7] G. N. Wijesekara, B. Farjad, A. Gupta, Y. Qiao, P. Delaney, and D. J. Marceau, “A comprehensive land-use/hydrological modeling system for scenario simulations in the Elbow River watershed, Alberta, Canada,” Environ. Manage., Vol.53, No.2, pp. 357-381, doi: 10.1007/s00267-013-0220-8, 2014.
  8. [8] I. R. Moe et al., “Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia,” Hydrol. Res. Lett, Vol.11, No.2, pp. 99-105, doi: 10.3178/hrl.11.99, 2017.
  9. [9] A. E. Brown, L. Zhang, T. A. McMahon, A. W. Western, and R. A. Vertessy, “A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation,” J. Hydrol., Vol.310, Nos.1-4, pp. 28-61, doi: 10.1016/j.jhydrol.2004.12.010, 2005.
  10. [10] J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams, “Large area hydrologic modeling and assessment part I: Model development,” J. Am. Water Resour. Assoc., Vol.34, No.1, pp. 73-89, doi: 10.1111/j.1752-1688.1998.tb05961.x, 1998.
  11. [11] P. D. Bates and A. P. J. de Roo, “A simple raster-based model for flood inundation simulation,” J. Hydrol., Vol.236, Nos.1-2, pp. 54-77, doi: 10.1016/S0022-1694(00)00278-X, 2000.
  12. [12] R. Falconer, B. Lin, and R. Harpin, “Environmental modelling in river basin management,” Int. J. River Basin Manag., Vol.3, No.3, pp. 169-184, doi: 10.1080/15715124.2005.9635256, 2005.
  13. [13] P. Kadam and D. Sen, “Flood inundation simulation in Ajoy River using mike-flood,” ISH J. Hydraul. Eng., Vol.18, No.2, pp. 129-141, doi: 10.1080/09715010.2012.695449, 2012.
  14. [14] A. Kretzschmar, W. Tych, N. Chappell, and K. Beven, “What Really Happens at the End of the Rainbow? – Paying the Price for Reducing Uncertainty (Using Reverse Hydrology Models),” Procedia Engineering, Vol.154, pp. 1333-1340. doi: 10.1016/j.proeng.2016.07.485, 2016.
  15. [15] S. Patro, C. Chatterjee, S. Mohanty, R. Singh, and N. S. Raghuwanshi, “Flood inundation modeling using MIKE FLOOD and remote sensing data,” J. Indian Soc. Remote Sens., Vol.37, No.1, pp. 107-118, doi: 10.1007/s12524-009-0002-1, 2009.
  16. [16] H. Kreibich et al., “Adaptation to flood risk: Results of international paired flood event studies,” Earth’s Futur., Vol.5, No.10, pp. 953-965, doi: 10.1002/2017EF000606, 2017.
  17. [17] U. Maione, P. Mignosa, and M. G. Tanda, “Influence of a highway embankment on a flood event,” Sci. Total Environ., Vol.59, No.C, pp. 425-430, doi: 10.1016/0048-9697(87)90465-7, 1987.
  18. [18] G. D. I. Baldassarre, A. Castellarin, and A. Brath, “Analysis of the effects of levee heightening on flood propagation: example of the River Po, Italy,” Hydrol. Sci. J., Vol.54, No.6, pp. 1007-1017, doi: 10.1623/hysj.54.6.1007, 2009.
  19. [19] P. Sultana, C. Johnson, and P. Thompson, “The impact of major floods on flood risk policy evolution: Insights from Bangladesh,” Int. J. River Basin Manag., Vol.6, No.4, pp. 339-348, doi: 10.1080/15715124.2008.9635361, 2008.
  20. [20] B. M. Caddis, M. A. Jempson, J. E. Ball, and W. J. Syme, “Incorporating hydrology into 2D hydraulic models – The direct rainfall approach,” 2008.
  21. [21] E. Todini, “Hydrological catchment modelling: Past, present and future,” Hydrol. Earth Syst. Sci., Vol.11, No.1, pp. 468-482, doi: 10.5194/hess-11-468-2007, 2007.
  22. [22] R. van Drie, P. Milevski, and M. Simon, “Validation of a 2-D Hydraulic Model – ANUGA, to undertake Hydrologic Analysis,” Proc. of the 34th World Congress of the Int. Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symp. and 10th Conf. on Hydraulics in Water Engineering, pp. 450-457, 2011.
  23. [23] K. D. Nastiti, Y. Kim, K. Jung, and H. An, “The application of Rainfall-Runoff-Inundation (RRI) model for inundation case in upper Citarum Watershed, West Java-Indonesia,” Procedia Engineering, Vol.125, pp. 166-172, doi: 10.1016/j.proeng.2015.11.024, 2015.
  24. [24] T. Sayama, G. Ozawa, T. Kawakami, S. Nabesaka, and K. Fukami, “Analyse pluie-débit-inondation de la crue de 2010 au Pakistan dans le bassin de la rivière Kaboul,” Hydrol. Sci. J., Vol.57, No.2, pp. 298-312, doi: 10.1080/02626667.2011.644245, 2012.
  25. [25] T. Sayama, Y. Tatebe, Y. Iwami, and S. Tanaka, “Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin,” Nat. Hazards Earth Syst. Sci., Vol.15, No.7, pp. 1617-1630, doi: 10.5194/nhess-15-1617-2015, 2015.
  26. [26] T. Sayama, Y. Tatebe, and S. Tanaka, “An emergency response-type rainfall-runoff-inundation simulation for 2011 Thailand floods,” J. Flood Risk Manag., Vol.10, No.1, pp. 65-78, doi: 10.1111/jfr3.12147, 2017.
  27. [27] Z. M. L. T. San, W. W. Zin, A. Kawasaki, R. A. Acierto, and T. Z. Oo, “Developing flood inundation map using RRI and SOBEK models: A case study of the Bago River Basin, Myanmar,” J. Disaster Res., Vol.15, No.3, pp. 277-287, doi: 10.20965/jdr.2020.p0277, 2020.
  28. [28] S. Zenkoji, S. Oda, T. Tebakari, and B. Archevarahuprok, “Spatial characteristics of flooded areas in the Mun and Chi River basins in northeastern Thailand,” J. Disaster Res., Vol.14, No.9, pp. 1337-1345, doi: 10.20965/jdr.2019.p1337, 2019.
  29. [29] T. N. Wickramaarachchi, H. Ishidaira, and T. M. N. Wijayaratna, “Projecting Land Use Transitions in the Gin Catchment, Sri Lanka,” Res. J. Environ. Earth Sci., Vol.5, No.8, pp. 473-480, doi: 10.19026/rjees.5.5677, 2013.
  30. [30] T. N. Wickramaarachchi, H. Ishidaira, and J. Magome, “Spatial-statistical Approach to Evaluate Land Use Change in Galle DSD, Sri Lanka,” Res. J. Appl. Sci. Eng. Technol., Vol.11, No.10, pp. 1041-1047, doi: 10.19026/rjaset.11.2117, 2015.
  31. [31] T. Ishihara and T. Takasao, “A Study on the Subsurface Runoff and Its effects on Runoff Process,” Trans. Japan Soc. Civ. Eng., Vol.1962, No.79, pp. 15-23, doi: 10.2208/jscej1949.1962.79_15, 1962.
  32. [32] T. Takasao and M. Shiba, “Study on the Runoff System Model Based on the Topographical Framework of River Basin,” Proc. Jpn. Soc. Civ. Eng., Vol.1976, No.248, pp. 69-82, doi: 10.2208/jscej1969.1976.248_69, 1976.
  33. [33] T. Takasao and M. Shiiba, “Incorporation of the effect of concentration of flow into the kinematic wave equations and its applications to runoff system lumping,” J. Hydrol., Vol.102, Nos.1-4, pp. 301-322, doi: 10.1016/0022-1694(88)90104-7, 1988.
  34. [34] T. Sayama, “Rainfall-Runoff-Inundation (RRI) Model,” 2017, https://www.pwri.go.jp/icharm/research/rri/rri_top.html [accessed February 3, 2021]
  35. [35] Y. Iwasa and K. Inoue, “Mathematical Simulations of Channel and Overland Flood Flows in View of Flood Disaster Engineering,” J. of Natural Disaster Science, Vol.4, No.1, p. 1f., 1982.
  36. [36] B. Lehner, K. L. Verdin, and A. Jarvis, “New global hydrography derived from spaceborne elevation data,” Eos, Trans. Am. Geophys. Union, Vol.89, No.10, pp. 93-94, doi: 10.1029/2008EO100001, 2008.
  37. [37] OCHA, ReliefWeb, “Mapping Inundation extent for Gin Ganga basin in the Southern Province (Sri Lanka) using CSA RADARSAT-2 Satellite Data (29 May and 02 Jun 2017),” 2017, https://reliefweb.int/map/sri-lanka/mapping-inundation-extent-gin-ganga-basin-southern-province-sri-lanka-using-csa-0 [accessed February 18, 2021]
  38. [38] T. N. Wickramaarachchi, H. Ishidaira, and T. M. N. Wijayaratna, “An Application of Distributed Hydrological Model, YHyM/BTOPMC to Gin Ganga Watershed, Sri Lanka,” Eng. J. Inst. Eng. Sri Lanka, Vol.45, No.2, pp. 31-40, doi: 10.4038/engineer.v45i2.6939, 2012.
  39. [39] Japan International Cooperation Agency (JICA) ‘ ‘Comprehensive Study on Disaster Management in Sri Lanka,” Japan International Cooperation Agency, 2009.
  40. [40] S. Yoshimoto and G. Amarnath, “Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru River basin, Sri Lanka,” Nat. Hazards, Vol.91, No.2, pp. 491-513, doi: 10.1007/s11069-017-3143-5, 2018.
  41. [41] M. Rasmy, T. Sayama, and T. Koike, “Development of water and energy Budget-based Rainfall-Runoff-Inundation model (WEB-RRI) and its verification in the Kalu and Mundeni River Basins, Sri Lanka,” J. Hydrol., Vol.579, 124163, doi: 10.1016/j.jhydrol.2019.124163, 2019.
  42. [42] P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Adv. Geosci, Vol.5, pp. 89-97, doi: 10.5194/adgeo-5-89-2005, 2005.
  43. [43] A. Jenkins, R. C. Ferrier, R. Harriman, and Y. O. Ogunkoya, “A case study in catchment hydrochemistry: Conflicting interpretations from hydrological and chemical observations,” Hydrol. Process., Vol.8, No.4, pp. 335-349, doi: 10.1002/hyp.3360080406, 1994.
  44. [44] V. A. Brown, J. J. McDonnell, D. A. Burns, and C. Kendall, “The role of event water, a rapid shallow flow component, and catchment size in summer stormflow,” J. Hydrol., Vol.217, Nos.3-4, pp. 171-190, doi: 10.1016/S0022-1694(98)00247-9, 1999.
  45. [45] M. C. Masiyandima, N. van de Giesen, S. Diatta, P. N. Windmeijer, and T. S. Steenhuis, “The hydrology of inland valleys in the sub-humid zone of West Africa: Rainfall-runoff processes in the M’bé experimental watershed,” Hydrol. Process., Vol.17, No.6, pp. 1213-1225, doi: 10.1002/hyp.1191, 2003.
  46. [46] H. Elsenbeer, “Hydrologic flowpaths in tropical rainforest soilscapes-A review,” Hydrol. Process., Vol.15, No.10, pp. 1751-1759, doi: 10.1002/hyp.237, 2001.
  47. [47] N. B. Nawarathna, T. Ao, S. Kazama, M. Sawamoto, and K. Takeuchi, “Influence of human activities on the BTOPMC model runoff simulations in large-scale watersheds,” Proc. of the Congress-International Association for Hydraulic Research, pp. 93-99, 2001.
  48. [48] J. M. M. U. Jayapadma, T. N. Wickramaarachchi, G. H. A. C. Silva, H. Ishidaira, and J. Magome, “Rainfall-Runoff Modelling Using MIKE 11 (NAM Model): A Case Study of Gin River Basin,” Proc. of the 6th Int. Symp. on Advances in Civil and Environmental Engineering, pp. 231-238, 2018.
  49. [49] R. Tsubaki and I. Fujita, “Unstructured grid generation using LiDAR data for urban flood inundation modelling,” Hydrol. Process, Vol.24, No.11, pp. 1404-1420, doi: 10.1002/hyp.7608, 2010.
  50. [50] G. Papaioannou, A. Loukas, L. Vasiliades, and G. T. Aronica, “Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach,” Nat. Hazards, Vol.83, No.1, pp. 117-132, doi: 10.1007/s11069-016-2382-1, 2016.
  51. [51] R. Kumar, “Flood Inundation and Hazard Mapping of 2017 Floods in the Rapti River Basin Using Sentinel-1A Synthetic Aperture Radar Images,” P. Kumar, M. Rani, C. P. Prem, H. Sajjad, and B. S. Chaudhary (Eds.), “Applications and Challenges of Geospatial Technology: Potential and Future Trends,” Springer, pp. 77-98, doi: 10.1007/978-3-319-99882-4_6, 2019.
  52. [52] Y. Wang, A. S. Chen, G. Fu, S. Djordjević, C. Zhang, and D. A. Savić, “An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features,” Environ. Model. Softw., Vol.107, pp. 85-95, doi: 10.1016/j.envsoft.2018.06.010, 2018.
  53. [53] Q. Yang, X. Shen, E. N. Anagnostou, C. Mo, J. R. Eggleston, and A. J. Kettner, “A High-Resolution Flood Inundation Archive (2016–the Present) from Sentinel-1 SAR Imagery over CONUS,” Bull. Am. Meteorol. Soc., Vol.102, No.5, pp. E1064–E1079, doi: 10.1175/BAMS-D-19-0319.1, 2021.
  54. [54] A. C. A. Suja and R. L. H. L. Rajapakse, “Evaluation of topographic data sources for 2D flood modelling: case study of Kelani basin, Sri Lanka,” IOP Conf. Ser. Earth Environ. Sci., Vol.612, 12043, doi: 10.1088/1755-1315/612/1/012043, 2020.
  55. [55] A. Cook and V. Merwade, “Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping,” J. Hydrol., Vol.377, Nos.1-2, pp. 131-142, doi: 10.1016/j.jhydrol.2009.08.015, 2009.
  56. [56] M. S. G. Adnan, A. Haque, and J. W. Hall, “Have coastal embankments reduced flooding in Bangladesh?,” Sci. Total Environ., Vol.682, pp. 405-416, doi: 10.1016/j.scitotenv.2019.05.048, 2019.
  57. [57] A. Åkesson, A. Wörman, and A. Bottacin-Busolin, “Hydraulic response in flooded stream networks,” Water Resour. Res., Vol.51, No.1, pp. 213-240, doi: 10.1002/2014WR016279, 2015.
  58. [58] N. M. Hunter, P. D. Bates, M. S. Horritt, and M. D. Wilson, “Simple spatially-distributed models for predicting flood inundation: A review,” Geomorphology, Vol.90, Nos.3-4, pp. 208-225, doi: 10.1016/j.geomorph.2006.10.021, 2007.
  59. [59] P. D. Bates, M. D. Wilson, M. S. Horritt, D. C. Mason, N. Holden, and A. Currie, “Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: Data analysis and modelling,” J. Hydrol., Vol.328, Nos.1-2, pp. 306-318, doi: 10.1016/j.jhydrol.2005.12.028, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 20, 2022