JDR Vol.17 No.1 pp. 7-20
doi: 10.20965/jdr.2022.p0007


Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms

Eiichi Gohda

Okayama University
1-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama 700-8530, Japan

Corresponding author

October 14, 2021
December 14, 2021
January 30, 2022
COVID-19, SARS-CoV-2, mRNA vaccine, immune response

Following the online publication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome in January 2020, two lipid nanoparticle-encapsulated mRNA vaccines, BNT162b2 and mRNA-1273, were rapidly developed and are now being used worldwide to prevent coronavirus disease 2019 (COVID-19). The mRNA of both vaccines encodes the full-length spike protein of SARS-CoV-2, which binds to the host cell receptor angiotensin-converting enzyme 2 and is believed to mediate virus entry into cells. After intramuscular injection of the vaccine, the spike protein is produced in the cells. Both humoral and cellular immune responses to the spike protein are elicited for protection against COVID-19. The efficacy of the two mRNA vaccines against COVID-19 with wild-type SARS-CoV-2 is more than 90% and is slightly decreased with the Delta variant, which is currently the predominant variant in many countries. In this review, the effectiveness of and immune responses to COVID-19 mRNA vaccines and their mechanisms are summarized and discussed. Potential waning immunity and an additional dose of COVID-19 mRNA vaccines are also discussed.

Cite this article as:
E. Gohda, “Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms,” J. Disaster Res., Vol.17 No.1, pp. 7-20, 2022.
Data files:
  1. [1] N. Zhu, D. Zhang, W. Wang et al., “A novel coronavirus from patients with pneumonia in China, 2019,” N. Engl. J. Med., Vol.382, No.8, pp. 727-733, doi: 10.1056/NEJMoa2001017, 2020.
  2. [2] D. Cucinotta and M. Vanelli, “WHO declares COVID-19 a pandemic,” Acta Biomed., Vol.91, No.1, pp. 157-160, doi: 10.23750/abm.v91i1.9397, 2020.
  3. [3] S. Shinoda, “Epidermology of the novel coronavirus disease 2019 (COVID-19) and several remarkable pandemics,” J. Disaster Res., Vol.16, No.1, pp. 97-109, doi: 10.20965/jdr.2021.p0097, 2021.
  4. [4] World Health Organization, “Naming the coronavirus disease (COVID-19) and the virus that causes it,” [accessed September 28, 2021]
  5. [5] Virological, Discussion forum for analysis of virus genomes, SARS-CoV-2 coronavirus, “Novel 2019 coronavirus genome,” [accessed September 28, 2021]
  6. [6] World Health Organization, “WHO Coronavirus (COVID-19) Dashboard,” [accessed October 2, 2021]
  7. [7] World Health Organization, “Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process,” [accessed November 28, 2021]
  8. [8] World Health Organization, “COVID-19 vaccine tracker and landscape,” [accessed November 28, 2021]
  9. [9] L. Schoenmaker, D. Witzigmann, J. A. Kulkarni et al., “mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability,” Int. J. Pharm., Vol.601, Article No.120586, doi: 10.1016/j.ijpharm.2021.120586, 2021.
  10. [10] Y. Huang, C. Yang, X.-F. Xu, W. Xu, and S.-W. Liu, “Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19,” Acta Pharmacol. Sin., Vol.41, No.9, pp. 1141-1149, doi: 10.1038/s41401-020-0485-4, 2020.
  11. [11] C. B. Jackson, M. Farzan, B. Chen, and H. Choe, “Mechanisms of SARS-CoV-2 entry into cells,” Nat. Rev. Mol. Cell. Biol., Vol.23, No.1, pp. 3-20, doi: 10.1038/s41580-021-00418-x, 2022.
  12. [12] F. X. Heinz and K. Stiasny, “Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action,” NPJ Vaccines, Vol.6, No.1, Article No.104, doi: 10.1038/s41541-021-00369-6, 2021.
  13. [13] M. Hoffmann, H. Kleine-Weber, S. Schroeder et al., “SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor,” Cell, Vol.181, No.2, pp. 271-280, doi: 10.1016/j.cell.2020.02.052, 2020.
  14. [14] U. Sahin, A. Muik, I. Vogler et al., “BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans,” Nature, Vol.595, No.7868, pp. 572-577, doi: 10.1038/s41586-021-03653-6, 2021.
  15. [15] S. Holtkamp, S. Kreiter, A. Selmi et al., “Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells,” Blood, Vol.108, No.13, pp. 4009-4017, doi: 10.1182/blood-2006-04-015024, 2006.
  16. [16] A. G. Orlandini von Niessen, M. A. Poleganov, C. Rechner et al., “Improving mRNA-based therapeutic gene delivery by expression-augmenting 3’ UTRs identified by cellular library screening,” Mol. Ther., Vol.27, No.4, pp. 824-836, doi: 10.1016/j.ymthe.2018.12.011, 2019.
  17. [17] K. S. Corbett, D. K. Edwards, S. R. Leist et al., “SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness,” Nature, Vol.586, No.7830, pp. 567-571, doi: 10.1038/s41586-020-2622-0, 2020.
  18. [18] N. Pardi, M. J. Hogan, F. W. Porter, and D. Weissman, “mRNA vaccines – a new era in vaccinology,” Nat. Rev. Drug Discov., Vol.17, No.4, pp. 261-279, doi: 10.1038/nrd.2017.243, 2018.
  19. [19] S. Rauch, E. Jasny, K. E. Schmidt, and B. Petsch, “New vaccine technologies to combat outbreak situations,” Front. Immunol., Vol.9, Article No.1963, doi: 10.3389/fimmu.2018.01963, 2018.
  20. [20] C. Zhang, G. Maruggi, H. Shan, and J. Li, “Advances in mRNA vaccines for infectious diseases,” Front. Immunol., Vol.10, Article No.594, doi: 10.3389/fimmu.2019.00594, 2019.
  21. [21] U.S. National Library of Medicine,, “Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19),” [accessed September 18, 2021]
  22. [22] U.S. Food and Drug Administration, FDA News Rerease, “FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine,” [accessed September 18, 2021]
  23. [23] F. P. Polack, S. J. Thomas, N. Kitchin et al., “Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine,” N. Engl. J. Med., Vol.383, No.27, pp. 2603-2615, doi: 10.1056/NEJMoa2034577, 2020.
  24. [24] L. R. Baden, H. M. El Sahly, B. Essink et al., “Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine,” N. Engl. J. Med., Vol.384, No.5, pp. 403-416, doi: 10.1056/NEJMoa2035389, 2021.
  25. [25] R. W. Frenck, Jr., N. P. Klein, N. Kitchin et al., “Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents,” N. Engl. J. Med., Vol.385, No.3, pp. 239-250, doi: 10.1056/NEJMoa2107456, 2021.
  26. [26] K. Ali, G. Berman, H. Zhou et al., “Evaluation of mRNA-1273 SARS-CoV-2 vaccine in adolescents,” N. Engl. J. Med., Vol.385, No.24, pp. 2241-2251, doi: 10.1056/NEJMoa2109522, 2021.
  27. [27] A. A. Shiravi, A. Ardekani, E. Sheikhbahaei, and K. Heshmat-Ghahdarijani, “Cardiovascular complications of SARS-CoV-2 vaccines: An overview,” Cardiol. Ther., doi: 10.1007/s40119-021-00248-0, 2021.
  28. [28] E. E. Walsh, R. W. Frenck, Jr., A. R. Falsey et al., “Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates,” N. Engl. J. Med., Vol.383, No.25, pp. 2439-2450, doi: 10.1056/NEJMoa2027906, 2020.
  29. [29] A. Pegu, S. E. O’Connell, S. D. Schmidt et al., “Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants,” Science, Vol.373, No.6561, pp. 1372-1377, doi: 10.1126/science.abj4176, 2021.
  30. [30] D. Steensels, N. Pierlet, J. Penders, D. Mesotten, and L. Heylen, “Comparison of SARS-CoV-2 antibody response following vaccination with BNT162b2 and mRNA-1273,” JAMA, Vol.326, No.15, pp. 1533-1535, doi: 10.1001/jama.2021.15125, 2021.
  31. [31] N. E. Richards, B. Keshavarz, L. J. Workman, M. R. Nelson, T. A. E. Platts-Mills, and J. M. Wilson, “Comparison of SARS-CoV-2 antibody response by age among recipients of the BNT162b2 vs the mRNA-1273 vaccine,” JAMA Netw. Open, Vol.4, No.9, Article No.e2124331, doi: 10.1001/jamanetworkopen.2021.24331, 2021.
  32. [32] G. Sahay, D. Y. Alakhova, and A. V. Kabanov, “Endocytosis of nanomedicines,” J. Control. Release, Vol.145, No.3, pp. 182-195, doi: 10.1016/j.jconrel.2010.01.036, 2010
  33. [33] M. A. Swartz, “The physiology of the lymphatic system,” Adv. Drug Deliv. Rev., Vol.50, No.1-2, pp. 3-20, doi: 10.1016/s0169-409x(01)00150-8, 2001.
  34. [34] A. M. Reichmuth, M. A. Oberli, A. Jaklenec, R. Langer, and D. Blankschtein, “mRNA vaccine delivery using lipid nanoparticles,” Ther. Deliv., Vol.7, No.5, pp. 319-334, doi: 10.4155/tde-2016-0006, 2016.
  35. [35] S. Ols, L. Yang, E. A. Thompson et al., “Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity,” Cell Rep., Vol.30, No.12, pp. 3964-3971, doi: 10.1016/j.celrep.2020.02.111, 2020.
  36. [36] F. Liang, G. Lindgren, A. Lin et al., “Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques,” Mol. Ther., Vol.25, No.12, pp. 2635-2647, doi: 10.1016/j.ymthe.2017.08.006, 2017.
  37. [37] S. Sabnis, E. S. Kumarasinghe, T. Salerno et al., “A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates,” Mol. Ther., Vol.26, No.6, pp. 1509-1519, doi: 10.1016/j.ymthe.2018.03.010, 2018.
  38. [38] J. Gilleron, W. Querbes, A. Zeigerer et al., “Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape,” Nat. Biotechnol., Vol.31, No.7, pp. 638-646, doi: 10.1038/nbt.2612, 2013.
  39. [39] Q. Fu and J. J. Chou, “A trimeric hydrophobic zipper mediates the intramembrane assembly of SARS-CoV-2 spike,” J. Am. Chem. Soc., Vol.143, No.23, pp. 8543-8546, doi: 10.1021/jacs.1c02394, 2021.
  40. [40] J. T. Dancey, K. A. Deubelbeiss, L. A. Harker, and C. A. Finch, “Neutrophil kinetics in man,” J. Clin. Invest., Vol.58, No.3, pp. 705-715, doi: 10.1172/JCI108517, 1976.
  41. [41] M. Mishto, J. Liepe, K. Textoris-Taube et al., “Proteasome isoforms exhibit only quantitative differences in cleavage and epitope generation,” Eur. J. Immunol., Vol.44, No.12, pp. 3508-3521, doi: 10.1002/eji.201444902, 2014.
  42. [42] E. R. Unanue, V. Turk, and J. Neefjes, “Variations in MHC class II antigen processing and presentation in health and disease,” Annu. Rev. Immunol., Vol.34, pp. 265-297, doi: 10.1146/annurev-immunol-041015-055420, 2016.
  43. [43] K. Nagaraju, “Immunological capabilities of skeletal muscle cells,” Acta Physiol. Scand., Vol.171, No.3, pp. 215-223, doi: 10.1046/j.1365-201x.2001.00823.x, 2001.
  44. [44] H. Wiendl, R. Hohlfeld, and B. C. Kieseier, “Immunobiology of muscle: advances in understanding an immunological microenvironment,” Trends Immunol., Vol.26, No.7, pp. 373-380, doi: 10.1016/, 2005.
  45. [45] C. W. Keller, C. Fokken, S. G. Turville et al., “TNF-α induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells,” J. Biol. Chem., Vol.286, No.5, pp. 3970-3980, doi: 10.1074/jbc.M110.159392, 2011.
  46. [46] M. Hubo, B. Trinschek, F. Kryczanowsky, A. Tuettenberg, K. Steinbrink, and H. Jonuleit, “Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells,” Front. Immunol., Vol.4, Article No.82, doi: 10.3389/fimmu.2013.00082, 2013.
  47. [47] N. Zhang and M. J. Bevan, “CD8+ T cells: foot soldiers of the immune system,” Immunity, Vol.35, No.2, pp. 161-168, doi: 10.1016/j.immuni.2011.07.010, 2011.
  48. [48] R. V. Luckheeram, R. Zhou, A. D. Verma, and B. Xia, “CD4+T cells: differentiation and functions,” Clin. Dev. Immunol., Vol.2012, Article No.925135, doi: 10.1155/2012/925135, 2012.
  49. [49] K. Lederer, D. Castaño, D. G. Atria et al., “SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation,” Immunity, Vol.53, No.6, pp. 1281-1295, doi: 10.1016/j.immuni.2020.11.009, 2020.
  50. [50] K. S. Corbett, B. Flynn, K. E. Foulds et al., “Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates,” N. Engl. J. Med., Vol.383, No.16, pp. 1544-1555, doi: 10.1056/NEJMoa2024671, 2020.
  51. [51] D. Laczkó, M. J. Hogan, S. A. Toulmin et al., “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice,” Immunity, Vol.53, No.4, pp. 724-732, doi: 10.1016/j.immuni.2020.07.019, 2020.
  52. [52] U. Sahin, A. Muik, E. Derhovanessian et al., “COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses,” Nature, Vol.586, No.7830, pp. 594-599, doi: 10.1038/s41586-020-2814-7, 2020.
  53. [53] A. M. Avalos and H. L. Ploegh, “Early BCR events and antigen capture, processing, and loading on MHC class II on B cells,” Front. Immunol., Vol.5, Article No.92, doi: 10.3389/fimmu.2014.00092, 2014.
  54. [54] G. Lindgren, S. Ols, F. Liang et al., “Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells,” Front. Immunol., Vol.13, No.8, Article No.1539, doi: 10.3389/fimmu.2017.01539, 2017.
  55. [55] L. Versteeg, M. M. Almutairi, P. J. Hotez, and J. Pollet, “Enlisting the mRNA vaccine platform to combat parasitic infections,” Vaccines, Vol.7, No.4, Article No.122, doi: 10.3390/vaccines7040122, 2019.
  56. [56] C. Pollard, J. Rejman, W. De Haes et al., “Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines,” Mol. Ther., Vol.21, No.1, pp. 251-259, doi: 10.1038/mt.2012.202, 2013.
  57. [57] A. De Beuckelaer, C. Pollard, S. Van Lint et al., “Type I interferons interfere with the capacity of mRNA lipoplex vaccines to elicit cytolytic T cell responses,” Mol. Ther., Vol.24, No.11, pp. 2012-2020, doi: 10.1038/mt.2016.161, 2016.
  58. [58] K. Karikó, M. Buckstein, H. Ni, and D. Weissman, “Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA,” Immunity, Vol.23, No.2, pp. 165-175, doi: 10.1016/j.immuni.2005.06.008, 2005.
  59. [59] O. Andries, S. Mc Cafferty, S. C. De Smedt, R. Weiss, N. N. Sanders, and T. Kitada, “N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice,” J. Control. Release, Vol.217, pp. 337-344, doi: 10.1016/j.jconrel.2015.08.051, 2015.
  60. [60] World Health Organization, “Tracking SARS-CoV-2 variants,” [accessed September 28, 2021]
  61. [61] S. Alizon, S. Haim-Boukobza, V. Foulongne et al., “Rapid spread of the SARS-CoV-2 Delta variant in some French regions, June 2021,” Euro Surveill., Vol.26, No.28, Article No.2100573, doi: 10.2807/1560-7917.ES.2021.26.28.2100573, 2021.
  62. [62] B. Li, A. Deng, K. Li et al., “Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant,” medRxiv preprint, doi: 10.1101/2021.07.07.21260122, 2021.
  63. [63] Y. Liu and J. Rocklöv, “The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus,” J. Travel Med., Vol.28, No.7, Article No.124, doi: 10.1093/jtm/taab124, 2021.
  64. [64] World Health Organization, “Weekly epidemiological update on COVID-19 – 21 September 2021,”—21-september-2021 [accessed September 29, 2021]
  65. [65] Centers for Disease Control and Prevention, “SARS-CoV-2 Variant Classifications and Definitions,” Updated September 17, 2021, [accessed September 29, 2021]
  66. [66] E. C. Wall, M. Wu, R. Harvey et al., “Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination,” Lancet, Vol.397, No.10292, pp. 2331-2333, doi: 10.1016/S0140-6736(21)01290-3, 2021.
  67. [67] D. Planas, D. Veyer, A. Baidaliuk et al., “Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization,” Nature, Vol.596, No.7871, pp. 276-280, doi: 10.1038/s41586-021-03777-9, 2021.
  68. [68] C. Liu, H. M. Ginn, W. Dejnirattisai et al., “Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum,” Cell, Vol.184, No.16, pp. 4220-4236, doi: 10.1016/j.cell.2021.06.020, 2021.
  69. [69] J. Liu, Y. Liu, H. Xia et al., “BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants,” Nature, Vol.596, No.7871, pp. 273-275, doi: 10.1038/s41586-021-03693-y, 2021.
  70. [70] K. B. Pouwels, E. Pritchard, P. C. Matthews et al., “Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK,” medRxiv preprint, doi: 10.1101/2021.08.18.21262237, 2021.
  71. [71] J. L. Bernal, N. Andrews, C. Gower et al., “Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant,” N. Engl. J. Med., Vol.385, No.7, pp. 585-594, doi: 10.1056/NEJMoa2108891, 2021.
  72. [72] A. Fowlkes, M. Gaglani, K. Groover et al., “Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection among frontline workers before and during B.1.617.2 (Delta) variant predominance – eight U.S. locations, December 2020–August 2021,” MMWR Morb. Mortal. Wkly. Rep., Vol.70, No.34, pp. 1167-1169, doi: 10.15585/mmwr.mm7034e4, 2021.
  73. [73] A. Puranik, P. J. Lenehan, E. Silvert et al., “Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence,” medRxiv preprint, doi: 10.1101/2021.08.06.21261707, 2021.
  74. [74] S. Nanduri, T. Pilishvili, G. Derado et al., “Effectiveness of Pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (Delta) variant – National Healthcare Safety Network, March 1–August 1, 2021,” MMWR Morb. Mortal. Wkly. Rep., Vol.70, No.34, pp. 1163-1166, doi: 10.15585/mmwr.mm7034e3, 2021.
  75. [75] M. W. Tenforde, W. H. Self, E. A. Naioti et al., “Sustained effectiveness of Pfizer-BioNTech and Moderna vaccines against COVID-19 associated hospitalizations among adults – United States, March–July 2021,” MMWR Morb. Mortal. Wkly. Rep., Vol.70, No.34, pp. 1156-1162, doi: 10.15585/mmwr.mm7034e2, 2021.
  76. [76] S. Nasreen, H. Chung, S. He et al., “Effectiveness of COVID-19 vaccines against variants of concern in Ontario, Canada,” medRxiv preprint, doi: 10.1101/2021.06.28.21259420, 2021.
  77. [77] J. S. Turner, J. A. O’Halloran, E. Kalaidina et al., “SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses,” Nature, Vol.596, No.7870, pp. 109-113, doi: 10.1038/s41586-021-03738-2, 2021.
  78. [78] F. J. Ibarrondo, C. Hofmann, J. A. Fulcher et al.,” Primary, recall, and decay kinetics of SARS-CoV vaccine antibody responses,” ACS Nano, Vol.15, No.7, pp. 11180-11191, doi: 10.1021/acsnano.1c03972, 2021.
  79. [79] T. W. McDade, A. R. Demonbreun, A. Sancilio, B. Mustanski, R. T. D’Aquila, and E. M. McNally, “Durability of antibody response to vaccination and surrogate neutralization of emerging variants based on SARS-CoV-2 exposure history,” Sci. Rep., Vol.11, No.1, Article No.17325, doi: 10.1038/s41598-021-96879-3, 2021.
  80. [80] Y. Goldberg, M. Mandel, Y. M. Bar-On et al., “Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel,” medRxiv preprint, doi: 10.1101/2021.08.24.21262423, 2021.
  81. [81] Ministry of Health, “An Important Measure Aimed at Protecting the Older Adult Population,” July 31, 2021, [accessed September 30, 2021]
  82. [82] Y. M. Bar-On, Y. Goldberg, M. Mandel et al., “BNT162b2 vaccine booster dose protection: A nationwide study from Israel,” medRxiv preprint, doi: 10.1101/2021.08.27.21262679, 2021.
  83. [83] Centers for Disease Control and Prevention, “COVID-19 Vaccines for Moderately to Severely Immunocompromised People,” Updated September 2, 2021, [accessed September 30, 2021]
  84. [84] N. Kamar, F. Abravanel, O. Marion, C. Couat, J. Izopet, and A. Del Bello, “Three doses of an mRNA Covid-19 vaccine in solid-organ transplant recipients,” N. Engl. J. Med., Vol.385, No.7, pp. 661-662, doi: 10.1056/NEJMc2108861, 2021.
  85. [85] Centers for Disease Control and Prevention, “Who Is Eligible for a COVID-19 Vaccine Booster Shot?,” Updated September 27, 2021, [accessed September 30, 2021]
  86. [86] AP News, “France first big EU nation to start widespread booster jabs,” September 1, 2021, [accessed October 5, 2021]
  87. [87] The Japan Times, “Japan plans to roll out booster shots by the end of the year,” September 17, 2021, [accessed October 5, 2021]
  88. [88] P. R. Krause, T. R. Fleming, R. Peto et al., “Considerations in boosting COVID-19 vaccine immune responses,” Lancet, Vol.398, No.10308, pp. 1377-1380, doi: 10.1016/S0140-6736(21)02046-8, 2021.
  89. [89] World Health Organization, “Interim statement on COVID-19 vaccine booster doses,” August 10, 2021, [accessed September 30, 2021]
  90. [90] K. A. Earle, D. M. Ambrosino, A. Fiore-Gartland et al., “Evidence for antibody as a protective correlate for COVID-19 vaccines,” Vaccine, Vol.39, No.32, pp. 4423-4428, doi: 10.1016/j.vaccine.2021.05.063, 2021.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2024