JDR Vol.16 No.4 pp. 778-785
doi: 10.20965/jdr.2021.p0778


3D Total Lightning Observation Network in Tokyo Metropolitan Area (Tokyo LMA)

Namiko Sakurai*,†, Koyuru Iwanami*, Shingo Shimizu*, Yasushi Uji*, Shin-ichi Suzuki*, Takeshi Maesaka*, Ken-ichi Shimose*, Paul R. Krehbiel**, William Rison**,***, and Daniel Rodeheffer**,***

*National Research Institute for Earth Science and Disaster Resilience (NIED)
3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan

Corresponding author

**New Mexico Institute of Mining and Technology, New Mexico, USA

***LMA Technologies, LLC, New Mexico, USA

October 1, 2020
March 23, 2021
June 1, 2021
3D total lightning, Tokyo LMA, lightning detection

The National Research Institute for Earth Science and Disaster Resilience deployed a lightning mapping array (LMA) in the Tokyo metropolitan area in March 2017. Called the “Tokyo LMA,” it obtains detailed three-dimensional observations of the total lightning activity (cloud-to-ground and intracloud flashes) in storms. The network initially consisted of 8 receiving stations, expanded to 12 stations in March 2018. Real-time total lightning images were first opened on the webpage in Japan. Real-time observations from the Tokyo LMA will be used in nowcasting lightning hazards and mitigating lightning disasters. Archived data will be used to develop lightning prediction techniques and a lightning climatology for the Tokyo metropolitan area.

Cite this article as:
Namiko Sakurai, Koyuru Iwanami, Shingo Shimizu, Yasushi Uji, Shin-ichi Suzuki, Takeshi Maesaka, Ken-ichi Shimose, Paul R. Krehbiel, William Rison, and Daniel Rodeheffer, “3D Total Lightning Observation Network in Tokyo Metropolitan Area (Tokyo LMA),” J. Disaster Res., Vol.16, No.4, pp. 778-785, 2021.
Data files:
  1. [1] Japan Meteorological Agency, (in Japanese) [accessed August 14, 2019]
  2. [2] A. Sugita and M. Matsui, “Lightning characteristics in Japan observed by the JLDN from 2001 to 2015,” The 16th Int. Conf. on Atmospheric Electricity, P-05-06, 2018.
  3. [3] V. A. Rakov, “Fundamentals of lightning,” Cambridge University Press, 248pp., 2016.
  4. [4] E. J. Workman and S. E. Reynolds, “Electrical activity as related to thunderstorm cell growth,” Bulletin of the American Meteorological Society, Vol.30, pp. 142-144, 1949.
  5. [5] R. M. Lhermitte and P. R. Krehbiel, “Doppler radar and radio observations of thunderstorms,” IEEE Trans. on Geoscience Electronics, Vol.17, No.4, pp. 162-171, 1979.
  6. [6] E. R. Williams, M. E. Weber, and R. E. Orville, “The relationship between lightning type and convective state of thunderclouds,” J. of Geophysical Research, Vol.94, No.D11, pp. 13213-13220, 1989.
  7. [7] T. Matsui, M. Adachi, J. Onuki, Z.-I. Kawasaki, M. Wada, and K. Matsuura, “Forecasting of cloud-to-ground discharge by SAFIR,” IEEJ Trans. on Power and Energy, Vol.116, No.4, pp. 438-443, 1996 (in Japanese and English abstract).
  8. [8] M. Saito, M. Ishii, H. Kawamura, and T. Shindo, “Location of negative charge associated with continuing current of upward lightning flash in winter,” IEEJ Trans. on Power and Energy, Vol.129, No.7, pp. 929-934, 2009.
  9. [9] M. Nishihashi, K. Shimose, K. Kusunoki, S. Hayashi, K. Arai, H. Inoue, W. Mashiko, M. Kusume, and H. Morishima, “Three-dimensional VHF lightning mapping system for winter thnderstorms,” J. of Atmospheric and Oceanic Technology, Vol.30, No.2, pp. 325-335, 2013.
  10. [10] S. Yoshida, T. Wu, T. Ushio, and Y. Takayanagi, “Lightning observation in 3D using a multi LF sensor network and comparison with radar reflectivity,” IEEJ Trans. on Power and Energy, Vol.134, No.4, pp. 188-196, 2014 (in Japanese).
  11. [11] D. Shi, D. Wang, T. Wu, R. J. Thomas, H. E. Edens, W. Rison, N. Takagi, and P. R. Krehbiel, “Leader polarity-reversal feature and charge structure of three upward bipolar lightning flashes,” JGR Atmospheres, Vol.123, No.17, pp. 9430-9442, 2018.
  12. [12] T. Wu, D. Wang, and N. Takagi, “Development of fast antenna lightning mapping array (FALMA),” Proc. of 96th Society of Atmospheric Electricity of Japan, pp. 201-202, 2018.
  13. [13] T. Maesaka, “Cloud radars,” C. Andronache (Ed.), “Remote Sensing of Clouds and Precipitation,” pp. 137-152, Springer, 2018.
  14. [14] M. Maki, T. Maesaka, R. Misumi, K. Iwanami, S. Suzuki, A. Kato, S. Shimizu, K. Kieda, T. Yamada, H. Hirano, F. Kobayashi, A. Masuda, T. Moriya, Y. Suzuki, A. Takahori, D. I. Lee, D. S. Kim, and V. Chandrasekar, “X-band polarimetric radar network in the Tokyo metropolitan area,” Proc. of the 5th European Conf. on Radar in Meteorology and Hydrology, 2008.
  15. [15] S. Kuran, “X-band polarimetric (multi-parameter) radar for heavy rainfall disaster,” The J. of the Institute of Electrical Installation Engineers of Japan, Vol.34, No.3, pp. 180-183, 2014.
  16. [16] A. Adachi, T. Kobayashi, H. Yamauchi, and S. Onogi, “Detection of potentially hazardous convective clouds with a dual-polarized C-band radar,” Atmospheric Measurement Techniques, Vol.6, pp. 2741-2760, 2013.
  17. [17] T. Kashiwayanagi, K. Morotomi, O. Sato, and H. Sugawara, “Rapid 3D scanning high resolution X-band weather radar with active phased array antenna,” WHO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation (CIMO TECO 2016), P2(34), 2016.
  18. [18] T. Adachi, K. Kusunoki, U. Shimada, and J. Ito, “Three dimensional structure of typhoon Mindlle (2016) and near-surface streaks observed by phased array radar,” The 38th Conf. on Radar Meteorology, 12B.2, 2017.
  19. [19] N. Takahashi, “Analysis of a precipitation system that exists above freezing level using a multi-parameter phased array weather radar,” Atmosphere, Vol.10, No.12, doi: 10.3390/atmos10120755, 2019.
  20. [20] W. Rison, R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, “A GPS-based three-dimensional lightning mapping system: initial observations in central New Mexico,” Geophysical Research Letters, Vol.26, No.23, pp. 3573-3576, 1999.
  21. [21] C. Lennon and L. Maier, “Lightning mapping system,” Proc. of 1991 Int. Aerospace and Ground Conf. on Lightning and Static Electricity, pp. 89-1-89-10, 1991.
  22. [22] R. J. Thomas, P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, “Accuracy of the lightning mapping array,” JGR Atmospheres, Vol.109, No.D14, doi:10.1029/2004JD004549, 2004.
  23. [23] D. R. MacGorman and W. D. Rust, “The electrical nature of storms,” Oxford University Press, pp. 422, 1998.
  24. [24] D. R. MacGorman, I. R. Apostolakpoulos, N. R. Lund, N. W. S. Demetriades, M. J. Murphy, and P. R. Krehbiel, “The timing of cloud-to-ground lightning relative to total lightning activity,” Cover Monthly Weather Review, Vol.139, No.12, pp. 3871-3886, 2011.
  25. [25] X. M. Shao and P. R. Krehbiel, “The spatial and temporal development of intracloud lightning,” JGR Atmospheres, Vol.101, No.D21, pp. 26641-26668, 1996.
  26. [26] R. J. Thomas, P. R. Krehbiel, W. Rison, T. Hamlin, J. Harlin, and D. Shown, “Observations of VHF source powers radiatied by lightning,” Geophysical Research Letters, Vol.28, No.1, pp. 143-146, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 22, 2021