single-dr.php

JDR Vol.16 No.4 pp. 778-785
(2021)
doi: 10.20965/jdr.2021.p0778

Note:

3D Total Lightning Observation Network in Tokyo Metropolitan Area (Tokyo LMA)

Namiko Sakurai*,†, Koyuru Iwanami*, Shingo Shimizu*, Yasushi Uji*, Shin-ichi Suzuki*, Takeshi Maesaka*, Ken-ichi Shimose*, Paul R. Krehbiel**, William Rison**,***, and Daniel Rodeheffer**,***

*National Research Institute for Earth Science and Disaster Resilience (NIED)
3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan

Corresponding author

**New Mexico Institute of Mining and Technology, New Mexico, USA

***LMA Technologies, LLC, New Mexico, USA

Received:
October 1, 2020
Accepted:
March 23, 2021
Published:
June 1, 2021
Keywords:
3D total lightning, Tokyo LMA, lightning detection
Abstract

The National Research Institute for Earth Science and Disaster Resilience deployed a lightning mapping array (LMA) in the Tokyo metropolitan area in March 2017. Called the “Tokyo LMA,” it obtains detailed three-dimensional observations of the total lightning activity (cloud-to-ground and intracloud flashes) in storms. The network initially consisted of 8 receiving stations, expanded to 12 stations in March 2018. Real-time total lightning images were first opened on the webpage in Japan. Real-time observations from the Tokyo LMA will be used in nowcasting lightning hazards and mitigating lightning disasters. Archived data will be used to develop lightning prediction techniques and a lightning climatology for the Tokyo metropolitan area.

Cite this article as:
N. Sakurai, K. Iwanami, S. Shimizu, Y. Uji, S. Suzuki, T. Maesaka, K. Shimose, P. Krehbiel, W. Rison, and D. Rodeheffer, “3D Total Lightning Observation Network in Tokyo Metropolitan Area (Tokyo LMA),” J. Disaster Res., Vol.16 No.4, pp. 778-785, 2021.
Data files:
References
  1. [1] Japan Meteorological Agency, https://www.jma.go.jp/jma/kishou/know/toppuu/thunder1-2.html (in Japanese) [accessed August 14, 2019]
  2. [2] A. Sugita and M. Matsui, “Lightning characteristics in Japan observed by the JLDN from 2001 to 2015,” The 16th Int. Conf. on Atmospheric Electricity, P-05-06, 2018.
  3. [3] V. A. Rakov, “Fundamentals of lightning,” Cambridge University Press, 248pp., 2016.
  4. [4] E. J. Workman and S. E. Reynolds, “Electrical activity as related to thunderstorm cell growth,” Bulletin of the American Meteorological Society, Vol.30, pp. 142-144, 1949.
  5. [5] R. M. Lhermitte and P. R. Krehbiel, “Doppler radar and radio observations of thunderstorms,” IEEE Trans. on Geoscience Electronics, Vol.17, No.4, pp. 162-171, 1979.
  6. [6] E. R. Williams, M. E. Weber, and R. E. Orville, “The relationship between lightning type and convective state of thunderclouds,” J. of Geophysical Research, Vol.94, No.D11, pp. 13213-13220, 1989.
  7. [7] T. Matsui, M. Adachi, J. Onuki, Z.-I. Kawasaki, M. Wada, and K. Matsuura, “Forecasting of cloud-to-ground discharge by SAFIR,” IEEJ Trans. on Power and Energy, Vol.116, No.4, pp. 438-443, 1996 (in Japanese and English abstract).
  8. [8] M. Saito, M. Ishii, H. Kawamura, and T. Shindo, “Location of negative charge associated with continuing current of upward lightning flash in winter,” IEEJ Trans. on Power and Energy, Vol.129, No.7, pp. 929-934, 2009.
  9. [9] M. Nishihashi, K. Shimose, K. Kusunoki, S. Hayashi, K. Arai, H. Inoue, W. Mashiko, M. Kusume, and H. Morishima, “Three-dimensional VHF lightning mapping system for winter thnderstorms,” J. of Atmospheric and Oceanic Technology, Vol.30, No.2, pp. 325-335, 2013.
  10. [10] S. Yoshida, T. Wu, T. Ushio, and Y. Takayanagi, “Lightning observation in 3D using a multi LF sensor network and comparison with radar reflectivity,” IEEJ Trans. on Power and Energy, Vol.134, No.4, pp. 188-196, 2014 (in Japanese).
  11. [11] D. Shi, D. Wang, T. Wu, R. J. Thomas, H. E. Edens, W. Rison, N. Takagi, and P. R. Krehbiel, “Leader polarity-reversal feature and charge structure of three upward bipolar lightning flashes,” JGR Atmospheres, Vol.123, No.17, pp. 9430-9442, 2018.
  12. [12] T. Wu, D. Wang, and N. Takagi, “Development of fast antenna lightning mapping array (FALMA),” Proc. of 96th Society of Atmospheric Electricity of Japan, pp. 201-202, 2018.
  13. [13] T. Maesaka, “Cloud radars,” C. Andronache (Ed.), “Remote Sensing of Clouds and Precipitation,” pp. 137-152, Springer, 2018.
  14. [14] M. Maki, T. Maesaka, R. Misumi, K. Iwanami, S. Suzuki, A. Kato, S. Shimizu, K. Kieda, T. Yamada, H. Hirano, F. Kobayashi, A. Masuda, T. Moriya, Y. Suzuki, A. Takahori, D. I. Lee, D. S. Kim, and V. Chandrasekar, “X-band polarimetric radar network in the Tokyo metropolitan area,” Proc. of the 5th European Conf. on Radar in Meteorology and Hydrology, 2008.
  15. [15] S. Kuran, “X-band polarimetric (multi-parameter) radar for heavy rainfall disaster,” The J. of the Institute of Electrical Installation Engineers of Japan, Vol.34, No.3, pp. 180-183, 2014.
  16. [16] A. Adachi, T. Kobayashi, H. Yamauchi, and S. Onogi, “Detection of potentially hazardous convective clouds with a dual-polarized C-band radar,” Atmospheric Measurement Techniques, Vol.6, pp. 2741-2760, 2013.
  17. [17] T. Kashiwayanagi, K. Morotomi, O. Sato, and H. Sugawara, “Rapid 3D scanning high resolution X-band weather radar with active phased array antenna,” WHO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation (CIMO TECO 2016), P2(34), 2016.
  18. [18] T. Adachi, K. Kusunoki, U. Shimada, and J. Ito, “Three dimensional structure of typhoon Mindlle (2016) and near-surface streaks observed by phased array radar,” The 38th Conf. on Radar Meteorology, 12B.2, 2017.
  19. [19] N. Takahashi, “Analysis of a precipitation system that exists above freezing level using a multi-parameter phased array weather radar,” Atmosphere, Vol.10, No.12, doi: 10.3390/atmos10120755, 2019.
  20. [20] W. Rison, R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, “A GPS-based three-dimensional lightning mapping system: initial observations in central New Mexico,” Geophysical Research Letters, Vol.26, No.23, pp. 3573-3576, 1999.
  21. [21] C. Lennon and L. Maier, “Lightning mapping system,” Proc. of 1991 Int. Aerospace and Ground Conf. on Lightning and Static Electricity, pp. 89-1-89-10, 1991.
  22. [22] R. J. Thomas, P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, “Accuracy of the lightning mapping array,” JGR Atmospheres, Vol.109, No.D14, doi:10.1029/2004JD004549, 2004.
  23. [23] D. R. MacGorman and W. D. Rust, “The electrical nature of storms,” Oxford University Press, pp. 422, 1998.
  24. [24] D. R. MacGorman, I. R. Apostolakpoulos, N. R. Lund, N. W. S. Demetriades, M. J. Murphy, and P. R. Krehbiel, “The timing of cloud-to-ground lightning relative to total lightning activity,” Cover Monthly Weather Review, Vol.139, No.12, pp. 3871-3886, 2011.
  25. [25] X. M. Shao and P. R. Krehbiel, “The spatial and temporal development of intracloud lightning,” JGR Atmospheres, Vol.101, No.D21, pp. 26641-26668, 1996.
  26. [26] R. J. Thomas, P. R. Krehbiel, W. Rison, T. Hamlin, J. Harlin, and D. Shown, “Observations of VHF source powers radiatied by lightning,” Geophysical Research Letters, Vol.28, No.1, pp. 143-146, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024