single-dr.php

JDR Vol.16 No.1 pp. 97-109
(2021)
doi: 10.20965/jdr.2021.p0097

Review:

Epidemiology of the Novel Coronavirus Disease 2019 (COVID-19) and Several Remarkable Pandemics

Sumio Shinoda

Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama University
1-1-1 Tsushima-Naka, Kita, Okayama, Okayama 700-8530, Japan

Corresponding author

Received:
November 3, 2020
Accepted:
November 12, 2020
Published:
January 30, 2021
Keywords:
novel coronavirus, COVID-19, SARS-CoV-2, pandemic
Abstract

COVID-19 is a newly discovered infectious disease caused by the novel coronavirus. The COVID-19 pandemic started at the end of December 2019 in Wuhan, China and spread rapidly across the world, especially in North and South America or Europe. The number of infected cases in the developed countries in North America and Europe or South America is extremely high, whereas its number in the developing countries of Africa or Southeast Asia is not so high; therefore, the COVID-19 is different from the usual infectious disease outbreaks. This article introduces the epidemiology of COVID-19, comparing with other historical infectious disease outbreaks.

Cite this article as:
Sumio Shinoda, “Epidemiology of the Novel Coronavirus Disease 2019 (COVID-19) and Several Remarkable Pandemics,” J. Disaster Res., Vol.16, No.1, pp. 97-109, 2021.
Data files:
References
  1. [1] I. Barberis, P. Myles, S. K. Ault, N. L. Bragazzi, and M. Martin, “History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccine,” J. Prev. Med. Hyg., Vol.57, No.3, pp. E115-E120, 2016.
  2. [2] M. E. Nickol and J. Kindrachuk, “A year of terror and a century of reflection: perspectives on the great influenza pandemic of 1918-1919,” BMC Infec. Dis., Vol.19, Article No.117, doi: 10.1186/s12879-019-3750-8, 2019.
  3. [3] R. E. Shope, “The etiology of swine influenza,” Science, Vol.73, No.1886, pp. 214-215, 1931.
  4. [4] C. Huang et al., “Clinical futures of patients infected with 2019 novel coronavirus, in Wuhan, China,” Lancet, Vol.395, No.10223, pp. 497-506, doi: 10.1016/s0140-6736(20)30183-5, 2020.
  5. [5] X. Xu, P. Chen, J. Wang, J. Feng, H. Zhou, X. Li, W. Zhong, and P. Hao, “Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission,” Sci. China Life Sci., Vol.63, No.3, pp. 457-460, 2020.
  6. [6] D. S. Hui, E. I. Azhar, T. A. Madani, F. Nioumi, R. Kock, O. Dar, G. Ippolito, T. D. Mchugh, Z. A. Memish, C. Drosten, A. Zumla, and E. Petersen, “The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China,” Int. J. Infect. Dis., Vol.91, pp. 264-266, doi: 10.1016/j.ijid.2020.01.009, 2020.
  7. [7] World Health Organization (WHO), “Novel Coronavirus – China,” January 12, 2020, https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ [accessed February 12, 2020]
  8. [8] World Health Organization (WHO), “World health statistics,” https://www.who.int/data/gho/publications/world-health-statistics
  9. [9] D. Wickramasinghe, N. Wickramasinghe, S. A. Kamburugamuwa, C. Arambepola, and D. N. Samarasekera, “Correlation between immunity from BCG and the morbidity and mortality of COVID-19,” Trop. Dis. Travel Med. Vac., Vol.6, Article No.17, doi: 10.1186/s40794-020-00117-z, 2020.
  10. [10] M. Miyasaka, “Is BCG vaccination causally related to reduced COVID-19 mortality?,” EMBO Mol. Med., Vol.12, No.6, e12661, 2020.
  11. [11] K. Yitbarek, G. Abraham, T. Girma, T. Tilahun, and M. Woldie, “The effect of Bacillus Calmette–Guérin (BCG) vaccination in preventing severe infectious respiratory diseases other than TB: Implications for the COVID-19 pandemic,” Vaccine, Vol.38, No.41, pp. 6374-6380, 2020.
  12. [12] K. L. Flanagan, E. Best, N. W. Crawford, M. Giles, A. Koirala, K. Macartney, F. Russell, B. W. Teh, and S. C. Wen, “Progress and Pitfalls in the quest for effective SARS-CoV-2 (COVID-19) vaccines,” Frontiers in Immunol., doi: 10.3389/fimmu.2020.579250, 2020.
  13. [13] A. Roth, M. Sodemann, H. Jensen, A. Poulsen, P. Gustafson, C. Weise, J. Gomes, Q. Djana, M. Jakobsen, M-L. Garly, A. Rodrigues, and P. Aaby, “Tuberculin reaction, BCG scar, and lower female mortality,” Epidemiol., Vol.17, No.5, pp. 562-568, doi: 10.1097/01.ede.0000231546.14749.ab, 2006.
  14. [14] E. Sartono, I. M. Lisse, E. M. Terveer, A. P. J. M van de Sande, H. Whittle, A. B. Fisker, A. Roth, P. Aaby, M. Yakzdanbakhsh, and C. S. Benn, “Oral polio vaccine influences the immune response to BCG vaccination. A natural experiment,” Plos One, doi: 10.1371/journal.pone.0010328, 2010.
  15. [15] S. J. C. F. M. Moorlag, R. J. W. Arts, R. van Crevel, and M. G. Netea, “Non-specific effects of BCG vaccine on viral infection,” Clin. Microbiol. Infect., Vol.25, No.12, pp. 1473-1478, 2019.
  16. [16] G. P. Rossi, V. Sanga, and M. Barton, “Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients,” eLife, doi: 10.7554/eLife.57278, 2020.
  17. [17] C. Bavishi, R. O. Bonow, V. Trivedi, J. D. Abbott, F. H. Messerli, and D. L. Bhatt, “Special article – Acute myocardial injury in patients hospitalized with COVID-19 infection: A review,” Prog. Cardiovascular Dis., Vol.63, No.5, pp. 682-689, 2020.
  18. [18] S. Suhail, J. Zajac, C. Fossum, H. Lowater, C. McCracken, N. Seveson, B. Laatsch, A. Narkiewicz-Jodko, B. Johnson, J. Liebau, S. Bhattacharyya, and S. Hati, “Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: A review,” Prot. J., Vol.39, No.6, pp. 644-656, 2020.
  19. [19] A. Sefra, C. Osorio, N. Jafri, E. L. Diaz, and J. E. C. Maldonado, “Intoxication with endogenous angiotensin II: A COVID-19 hypothesis,” Frontiers in Immunol., doi: 10.3389/fimmu.2020.01472, 2020.
  20. [20] M. Hussain, N. Jabeen, F. Raza, S. Shabbir, A. A. Baig, A. Amamullah, and B. Aziz, “Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein,” J. Med. Virol., Vol.92, No.9, pp. 1580-1586, doi: 10.1002/jmv.25832, 2020.
  21. [21] J. K. Millet and G. R. Whittaker, “Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells,” Virol., Vol.517, pp. 3-8, 2018.
  22. [22] M. K. Chung, S. Karnik, J. Saef, C. Bergmann, J. Barnard, M. M. Lederman, J. Tilton, F. Cheng, C. V. Harding, J. B. Young, N. Mehta, S. J. Cameron, K. R. McCrae, A. H. Schmaier, J. D. Smith, A. Kalra, S. K. Gebreselassie, G. Thomas, E. S. Hawkins, and L. G. Svenson, “SARS-CoV-2 and ACE2: The biology and clinical data setting the ARB and ACE1 controversy,” EbioMedicine, Vol.58, Article No.102907, doi: 10.1016/j.ebiom.2020.102907, 2020.
  23. [23] Y. Liu, Y. Yang, C. Zhang, F. Huang, F. Wang, J. Yuan, Z. Wang, J. Li, J. Li, C. Feng, Z. Zhang, L. Wang, L. Peng, L. Chen, Y. Qin, D. Zhao, S. Tan, L. Yin, J. Xu, C. Zhou, C. Jiang, and L. Liu, “Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury,” Sci. China Life Sci., Vol.63, No.3, pp. 364-374, 2020.
  24. [24] D. Gemmati, B. Bramanti, M. L. Serino, P. Secchiero, G. Zauli, and V. Tisato, “COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males?,” Int. J. Mol. Sci., doi: 10.3390/ijms21103474, 2020.
  25. [25] S. Ansart, C. Pelat, P. Y. Boelle, F. Carrat, A. Flahault, and A.-J. Valleron, “Mortality burden of the 1918-1919 influenza pandemic in Europe,” Influenza Other Respir. Viruses, Vol.3, No.3, pp. 99-106, 2009.
  26. [26] D. M. Morens and J. K. Taubenberger, “The mother of all pandemics is 100 years old (and going strong)!,” Am. J. Publ. Health, Vol.108, No.11, pp. 1449-1454, 2018.
  27. [27] J. K. Taubenberger, J. V. Hultin, and D. M. Morens, “Discovery and characterization of the 1918 pandemic influenza in historical context,” Antivir. Ther., Vol.12, No.4, pp. 581-591, 2007.
  28. [28] L. Cilek, G. Chowell, and D. R. Fariñas, “Age-specific excess mortality patterns during the 1918-1920 influenza pandemic in Madrid, Spain,” Am. J. Epidemiol., Vol.187, No.12, pp. 2511-2523, 2018.
  29. [29] N. P. A. S. Johnson and J. Mueller, “Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic,” Bull. Hist. Med., Vol.76, No.1, pp. 105-115, 2002.
  30. [30] W. Smith, C. H. Andrewes, and P. P. Laidlaw, “A virus obtained from influenza patients,” Lancet, Vol.222, No.5732, pp. 66-68, 1933.
  31. [31] J. K. Taubenberger, A. H. Reid, R. M. Lourens, R. Wang, G. Jin, and T. G. Fanning, “Characterization of the 1918 influenza virus polymerase genes,” Nature, Vol.437, pp. 889-893, 2005.
  32. [32] R. J. Garten, C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, W. M. Sessions, X. Xu, E. Skepner, V. Deyde, M. Okomo-Adhiambo, L. Gubareva, J. Barnes, C. B. Smith, S. L. Emery, M. J. Hillman, P. Rivailler et al., “Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans,” Science, Vol.325, No.5937, pp. 197-201, 2009.
  33. [33] S. Broor, A. Krishnan, D. S. Roy, S. Dhakad, S. Kaushik, M. A. Mir, Y. Singh, A. Moen, M. Chadha, A. C. Mishra, and R. B. Lal, “Dynamic patterns of circulating seasonal and pandemic A(H1N1)pdm09 influenza viruses from 2007-2010 in and around Delhi, India,” Plos One, Vol.7, No.1, e29129, doi: 10.1371/journal.pone.0029129, 2012.
  34. [34] A. Trampuz, R. M. Prabhu, T. F. Smith, and L. M. Baddour, “Avian influenza: a new pandemic threat?,” Mayo Clin. Proc., Vol.79, No.4, pp. 523-530, 2004.
  35. [35] L. D. Sims, J. Domenech, C. Benigno, S. Kahn, A. Kamata, J. Lubroth, V. Martin, and P. Roeder, “Origin and evolution of highly pathogenic H5N1 avian influenza in Asia,” Vet. Rec., Vol.157, No.6, pp. 159-164, 2005.
  36. [36] Y. Bi, H. Liu, C. Xiong, D. Liu, W. Shi, M. Li, S. Liu, J. Chen, G. Chen, Y. Li, G. Yang, Y. Lei, Y. Xiong, F. Lei, H. Wang, Q. Chen, J. Chen, and G. F. Gao, “Novel avian influenza A(H5N6) viruse isolated in migratory waterfowl before the first human case reported in China, 2014,” Sci. Rep., doi: 10.1038/srep29888, 2016.
  37. [37] T. W. Vahlenkamp, T. C. Harder, M. Giese, F. Lin, J. P. Teifke, R. Klopfleisch, R. Hoffmann, I. Tarpey, M. Beer, and T. C. Mettenleiter, “Protection of cats against lethal influenza H5N1 challenge infection,” J. Gen. Virol., Vol.89, No.4, pp. 968-974, doi: 10.1099/vir.0.83552-0, 2008.
  38. [38] D. Huremović, “Brief History of Pandemics (Pandemics Throughout History),” D. Huremović (Ed.), “Psychiatry of Pandemics,” pp. 7-35, Springer Nature, 2019.
  39. [39] I. Ansari, G. Grier, and M. Byers, “Deliberate release: Plague – A review,” Biosaf. Biosec., Vol.2, No.1, pp. 10-22, 2020.
  40. [40] B. Bramanti, K. R. Dean, L. Walløe, and N. C. Strenseth, “The Third Plague Pandemic in Europe,” Proc. R. Soc., B., Vol.286, No.1901, doi: 10.1098/rspb.2018.2429, 2018.
  41. [41] A. J. Accardi, “Bioterrorism,” Can. J. Emerg. Med., Vol.3, No.1, pp. 5-7, 2002.
  42. [42] T. V. Inglesby et al., “Plague as a Biological Weapon: Medical and Public Health Management,” J. Amer. Med. Assoc., Vol.283, No.17, pp. 2281-2290, 1997.
  43. [43] S. Hasan, S. F. Jamdar, M. Alalowi, and S. M. A. A. A. Beaiji, “Dengue virus: A global human threat: Review of literature,” J. of Int. Soc. Prev. Community Dent., Vol.6, No.1, pp. 1-6, 2016.
  44. [44] S. A. M. Kularatne, K. G. Weerakoon, R. Munasinghe, U. K. Ralapanawa, and M. Pathirage, “Trends of fluid requirement in dengue fever and dengue haemorrhagic fever: a single centre experience in Sri Lanka,” BMC Research Notes, Vol.8, Article No.130, doi: 10.1186/s13104-015-1085-0, 2015.
  45. [45] I. H. Haralambieva, R. B. Kennedy, I. G. Ovsyannikova, J. A. Whitaker, and G. A. Poland, “Variability in humoral immunity to measles vaccine: new developments,” Trends Mol. Med., Vol.21, No.12, pp. 789-801, 2015.
  46. [46] D. E. Griffin, W.-H. Lin, and C.-H. Pan, “Measles virus, immune control and persistence,” FEMS Microbiol. Rev., Vol.36, No.3, pp. 649-662, 2012.
  47. [47] J. M. Lane and L. Summer, “Smallpox as a weapon for bioterrorism,” I. W. Fong and K. Alibek (Eds.), “Bioterrorism and Infectious Agents: A New Dilemma for the 21st Century,” Springer Nature, pp. 147-167, 2005.
  48. [48] M. Wheelis, “Biological Warfare at the 1346 Siege of Caffa,” Emerg. Infect. Dis., Vol.8, No.9, pp. 971-975, 2002.
  49. [49] H. Meyer, R. Ehmann, and G. L. Smith, “Smallpox in the Post-Eradication Era,” Viruses, Vol.12, No.2, Article No.138, doi: 10.3390/v12020138, 2020.
  50. [50] R. B. Kennedy, I. G. Ovsyannikova, R. M. Jacobson, and G. A. Poland, “The immunology of smallpox vaccines,” Curr. Opin. Immunol., Vol.21, No.3, pp. 314-320, 2009.
  51. [51] World Health Organization (WHO), “Operation framework for the development of the World Health Organization Smallpox Vaccine Emergency Stockpile in response to a smallpox event,” 2017.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 17, 2021