JDR Vol.14 No.7 pp. 939-948
doi: 10.20965/jdr.2019.p0939


Drought Index for Peatland Wildfire Management in Central Kalimantan, Indonesia During El Niño Phenomenon

Novitasari Novitasari*, Joko Sujono*,†, Sri Harto*, Azwar Maas**, and Rachmad Jayadi*

*Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada
Jl. Grafika No 2, Yogyakarta 55281, Indonesia

Corresponding author

**Department of Soil Science, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia

August 1, 2018
September 4, 2019
October 1, 2019
Keetch–Byram drought index (KBDI), number of fire alerts, El Niño, water table, peatland wildfire

Peatland wildfires, especially in tropical ecosystems, are often caused by drought, and lead to smoke and other related problems in all aspects of community life in Indonesia, especially in Central Kalimantan. Drought is worsened by the number of dry days in the dry season, known as the El Niño phenomenon, and the drainage system in a peatland. Additionally, drought decreases the water table and increases the probability of occurrence of wildfires in peatland areas. This study aims to modify the numerical formula of the drought factor (DFt) in the Keetch–Byram drought index (KBDI) based on tropical peatland wildfire conditions in Central Kalimantan during the El Niño phenomenon in 2015. Furthermore, it applies a revised peatland water table reference of 400 mm below the ground surface, based on previous research and the Government regulation on peatland ecosystem protection and management in Indonesia. These El Niño conditions caused a rain decline of approximately 35% in Block A, Ex-Mega Rice Project, Mantangai sub-District, Kapuas District, Central Kalimantan Province. The modified KBDI is compared with the Number of Fire Alerts (NFA) using NASA’s Active Fire Data in 2015. The analysis results demonstrate that the modified DFt under tropical peatland conditions leads to an increase in the drought index value, beginning on the driest days between July and November 2015. The value of the KBDI drought index increases from the high to the extreme index from September to November 2015, when as many as 61 extreme drought indices became indicators for peatland wildfire risk assessment. The extreme KBDI is directly proportional to the NFA recorded during 2015, and the highest number of fire alerts is observed for October 2015, with 1746 fire alerts within 31 days and extreme drought indices from 27 days. Hence, this modified formula is suitable for wildfire conditions on this peatland in Central Kalimantan. Overall, the modified DFt can be successfully applied to the El Niño phenomenon in 2015.

Cite this article as:
N. Novitasari, J. Sujono, S. Harto, A. Maas, and R. Jayadi, “Drought Index for Peatland Wildfire Management in Central Kalimantan, Indonesia During El Niño Phenomenon,” J. Disaster Res., Vol.14 No.7, pp. 939-948, 2019.
Data files:
  1. [1] C. E. Stockwell et al., “Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño,” Atmos. Chem. Phys., Vol.16, No.18, pp. 11711-11732, 2016.
  2. [2] S. E. Page, F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin, “The amount of carbon released from peat and forest fires in Indonesia during 1997,” Nature, Vol.420, No.6911, pp. 61-65, 2002.
  3. [3] W. C. Adinugroho, I. N. N. Suryadiputra, B. H. Saharjo, and L. Siboro, “Panduan Pengendalian Kebakaran Hutan dan Lahan Gambut,” Wetlands International: Indonesia Programme, 2004.
  4. [4] H. Hayasaka, “Recent Large-Scale Fires in Boreal and Tropical Forests,” J. Disaster Res., Vol.2, No.4, pp. 265-275, DOI: 10.20965/jdr.2007.p0265, 2007.
  5. [5] Wahyunto, S. Ritung, Suparto, and H. Subagjo, “Sebaran Gambut dan Kandungan Karbon di Sumatera dan Kalimantan,” Wetlands International: Indonesia Programme, 2005.
  6. [6] S. Ritung et al., “Peta Lahan Gambut Indonesia Skala 1:250.000,” 2011.
  7. [7] H. Vasander, “3. Overview of types of peatlands,” R. Biancalani and A. Avagyan (Eds.), “Towards climate-responsible peatlands management,” Food and Agriculture Organization of the United Nations (FAO), pp. 15-18, 2014.
  8. [8] S. W. Atmojo, “Pengelolaan Lahan Gambut,” UNS Press, 2014.
  9. [9] S. Najiyati, L. Muslihat, I. Nyoman, and N. Suryadiputra, “Panduan Pengelolaan Lahan Gambut,” Wetlands International: Indonesia Programme, 2005.
  10. [10] I. T. C. Wibisono, L. Siboro, and I. N. N. Suryadiputra, “Panduan Rehabilitasi dan Teknik Silvikultur di Lahan Gambut,” Wetlands International: Indonesia Programme, 2005.
  11. [11] J. P. Andriesse, “Nature and Management of Tropical Peat Soils,” FAO Soils Bulletin 59, Food and Agriculture Organization of the United Nations (FAO), 1988.
  12. [12] N. Yulianti and H. Hayasaka, “Recent Active Fires under El Niño Conditions in Kalimantan, Indonesia,” American J. of Plant Sciences, Vol.4, No.3A, pp. 685-696, 2013.
  13. [13] S. Page and A. Hooijer, “6. Environmental impacts and consequences of utilizing peatlands,” R. Biancalani and A. Avagyan (Eds.), “Towards climate-responsible peatlands management,” Food and Agriculture Organization of the United Nations (FAO), pp. 27-35, 2014.
  14. [14] P. Sofan, Y. Vetrita, F. Yulianto, and M. R. Khomarudin, “Multi-temporal remote sensing data and spectral indices analysis for detection tropical rainforest degradation: case study in Kapuas Hulu and Sintang districts, West Kalimantan, Indonesia,” Nat. Hazards, Vol.80, No.2, pp. 1279-1301, 2016.
  15. [15] K. Becek and A. B. Horwath, “Is vegetation collapse on Borneo already in progress?,” Nat. Hazards, Vol.85, No.2, pp. 1279-1290, 2017.
  16. [16] H. Herawati and H. Santoso, “Tropical forest susceptibility to and risk of fire under changing climate: A review of fire nature, policy and institutions in Indonesia,” For. Policy Econ., Vol.13, No.4, pp. 227-233, 2011.
  17. [17] A. C. Watts and L. N. Kobziar, “Smoldering Combustion in Organic Soils: Peat and Muck Fires in the Southeastern U.S.,” South. Fire Exch., 2012.
  18. [18] A. Sandhyavitri, R. Amri, and D. Fermana, “Development of Underground Peat Fire Detection,” Int. Conf. on Technology, Innovation, and Society (ICTIS2019), pp. 439-444, 2016.
  19. [19] X. Huang, F. Restuccia, M. Gramola, and G. Rein, “Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires,” Combust. Flame, Vol.168, pp. 393-402, 2016.
  20. [20] G. Rein, N. Cleaver, C. Ashton, P. Pironi, and J. L. Torero, “The severity of smouldering peat fires and damage to the forest soil,” Catena, Vol.74, No.3, pp. 304-309, 2008.
  21. [21] M. G. L. Van Nieuwstadt and D. Sheil, “Drought, fire and tree survival in a Borneo rain forest, East Kalimantan,” Indonesia J. of Ecology, Vol.93, No.1, pp. 191-201, 2005.
  22. [22] S. Martín, M. Rodríguez, J. M. Moreno, and D. G. Angeler, “Complex ecological responses to drought and fire-retardant contamination impacts in ephemeral waters,” Water. Air. Soil Pollut., Vol.225, No.8, DOI: 10.1007/s11270-014-2078-7, 2014.
  23. [23] M. Solh and M. van Ginkel, “Drought preparedness and drought mitigation in the developing world’s drylands,” Weather Clim. Extrem., Vol.3, pp. 62-66, 2014.
  24. [24] R. S. Pulwarty and M. V. K. Sivakumar, “Information systems in a changing climate: Early warnings and drought risk management,” Weather Clim. Extrem., Vol.3, pp. 14-21, 2014.
  25. [25] M. L. Khandekar, T. S. Murty, D. Scott, and W. Baird, “The 1997 El Niño, Indonesian Forest fires and the Malaysian Smoke problem: A deadly combination of natural and man-made hazard,” Nat. Hazards, Vol.21, No.2-3, pp. 131-144, 2000.
  26. [26] R. D. Field, Y. Wang, O. Roswintiarti, and Guswanto, “A drought-based predictor of recent haze events in western Indonesia,” Atmos. Environ., Vol.38, No.13, pp. 1869-1878, 2004.
  27. [27] M. Pidwirny, “El Niño, La Niña and the Southern Oscillation,” 2006, [accessed March 7, 2016]
  28. [28] N. Wanders, H. A. J. van Lanen, and A. F. van Loon, “Indicators for drought characterization on a global scale,” WATCH Technical Report No.24, p. 93, 2010.
  29. [29] A. Hasegawa, M. Gusyev, and Y. Iwami, “Meteorological drought and flood assessment using the comparative SPI approach in Asia under climate change,” J. Disaster Res., Vol.11, No.6, pp. 1082-1090, DOI: 10.20965/jdr.2016.p1082, 2016.
  30. [30] D. A. Wilhite and M. D. Svoboda, “Drought early warning systems in the context of drought preparedness and mitigation,” Early Warn. Syst. drought Prep. drought Manag., pp. 1-21, 2000.
  31. [31] M. A. Gusyev, A. Hasegawa, J. Magome, D. Kuribayashia, H. Sawanoa, and S. Lee, “Drought assessment in the Pampanga River basin, the Philippines – Part 1: Characterizing a role of dams in historical droughts with standardized indices,” 21st Int. Congress on Modeling and Simulation, pp. 1586-1592, 2015.
  32. [32] R. A. Adesiji, P. A. Adeoye, and A. O. Gbadebo, “Review Article Effects of Water Table Fluctuations on Peatland-A Review,” Sch. J. Eng. Technol., Vol.2, No.3C, pp. 482-487, 2014.
  33. [33] N. Novitasari, J. Sujono, S. Harto, A. Maas, and R. Jayadi, “Pengaruh Karakteristik Gambut Terdegradasi terhadap Kebakaran Lahan Gambut,” Prosiding Seminar Nasional Lingkungan Lahan Basah, Vol.3, pp. 347-351, 2018.
  34. [34] R. R. Heim, “A review of twentieth-century drought indices used in the United States,” Bulletin of the American Meteorological Society, 2002.
  35. [35] H.-R. Byun and D. A. Wilhite, “Objective Quantification of Drought Severity and Duration,” J. of Climate, Vol.12, No.9, pp. 2747-2756, 1999.
  36. [36] World Meteorological Organization (WMO) and Global Water Partnership (GWP), “Handbook of drought indicators and indices,” Integrated Drought Management Programme (IDMP), No.1173, 2017.
  37. [37] M. Taufik, B. I. Setiawan, and H. a. J. van Lanen, “Modification of a fire drought index for tropical wetland ecosystems by including water table depth,” Agric. For. Meteorol., Vol.203, pp. 1-10, 2015.
  38. [38] D. X. Viegas, G. Bovio, A. Ferreira, A. Nosenzo, and B. Sol, “Comparative study of various methods of fire danger evaluation in southern Europe,” Int. J. Wildl. Fire, Vol.9, No.4, p. 235, 1999.
  39. [39] P. Groisman et al., “Changes in Precipitation Distribution Spectra and Contemporary Warming of the Extratropics: Implications for Intense Rainfall, Droughts, and Potential Forest Fire Danger,” 16th Conf. on Climate Variability and Change, Session No.12.5, 2005.
  40. [40] C. Willis et al., “The Development of a National Fire Danger Rating System for South Africa,” CSIR Water, Environment and Forestry Technology, 2001.
  41. [41] J. Skvarenina, J. Mindas, J. Holecy, and J. Tucek, “Analysis of the natural and meteorological conditions during two largest forest fire events in the Slovak Paradise National Park,” J. Meteorol., Vol.7, pp. 167-171, 2003.
  42. [42] A. J. Dowdy, G. a Mills, K. Finkele, and W. De Groot, “Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index,” CAWCR Technical Report No.10, 2009.
  43. [43] J. J. Keetch and G. M. Byram, “A Drought Index for Forest Fire Control,” U.S. Department of Agriculture, 1968.
  44. [44] G. Petros, M. Antonis, and T. Marianthi, “Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry,” Agric. For. Meteorol., Vol.151, No.2, pp. 241-250, 2011.
  45. [45] A. Garcia-Prats, D. C. Antonio, F. J. G. Tarcísio, and M. J. Antonio, “Development of a Keetch and Byram – Based drought index sensitive to forest management in Mediterranean conditions,” Agric. For. Meteorol., Vol.205, pp. 40-50, 2015.
  46. [46] K. Kaku and A. Held, “Sentinel Asia: A space-based disaster management support system in the Asia-Pacific region,” Int. J. Disaster Risk Reduct., Vol.6, pp. 1-17, 2013.
  47. [47] E. I. Putra, H. Takahashi, H. Hayasaka, and A. Usup, “Recent Peat Fire Activity in the Mega Rice Project Area, Central Kalimantan, Indonesia,” J. Disaster Res., Vol.3, No.5, pp. 334-341, DOI: 10.20965/jdr.2008.p0334, 2008.
  48. [48] “Peraturan Pemerintah (PP) No.57: Peraturan Pemerintah (PP) tentang Perubahan atas Peraturan Pemerintah Nomor 71 Tahun 2014 tentang Perlindungan dan Pengelolaan Ekosistem Gambut,” 2016.
  49. [49] T. Notohadiprawiro, “Mega-Project of Central Kalimantan Wetland Development for Food Crop Production, Belief and Truth,” Proc. of the Int. Peat Symposium: The Spirit of Peatlands, 1998.
  50. [50] NASA, “Earth Observatory,” Earth Observatory, 2015, [accessed January 24, 2016]
  51. [51] KFCP, “Peta Rencana Pola Tata Guna Lahan Desa Sei Ahas,” Indonesia: Indonesia-Australia Forest Carbon Partnership (IAFCP), 2014.
  52. [52] H. Hayasaka, I. Noguchi, E. Indra, N. Yulianti, and K. Vadrevu, “Peat-fire-related air pollution in Central Kalimantan, Indonesia,” Environ. Pollut., Vol.195, pp. 257-266, 2014.
  53. [53] N. Novitasari, J. Sujono, S. Harto, A. Maas, and R. Jayadi, “Restoration of peat dome in ex-Mega rice project area in Central Kalimantan,” AIP Conf. Proc., Vol.1977, 2018.
  54. [54] I. N. N. Suryadiputra et al., “2005 Buku_Suryadiputra_Panduan Penyekatan Parit (Indonesia),” Wetlands International: Indonesia Programme, 2005.
  55. [55] BMKG, “Data Hujan Online,” 2019, [accessed January 30, 2016]
  56. [56] D. C. Morton, R. S. Defries, J. T. Randerson, L. Giglio, W. Schroeder, and G. R. van der Werf, “Agricultural intensification increases deforestation fire activity in Amazonia,” Glob. Chang. Biol., Vol.14, No.10, pp. 2262-2275, 2008.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2024