JDR Vol.14 No.1 pp. 69-79
doi: 10.20965/jdr.2019.p0069


Improving Spatial Rainfall Estimates at Mt. Merapi Area Using Radar-Rain Gauge Conditional Merging

Roby Hambali*,†, Djoko Legono*, Rachmad Jayadi*, and Satoru Oishi**

*Department of Civil and Environmental Engineering, Universitas Gadjah Mada
Jl. Grafika No.2 Bulaksumur, Yogyakarta 55281, Indonesia

Corresponding author

**Research Center for Urban Safety and Security, Kobe University, Hyogo, Japan

August 3, 2018
December 19, 2018
February 1, 2019
X-band MP radar, rain gauge, merging method, Mt. Merapi

Rainfall monitoring is important for providing early warning of lahar flow around Mt. Merapi. The X-band multi-parameter radar developed to support these warning systems provides rainfall information with high spatial and temporal resolution. However, this method underestimates the rainfall compared with rain gauge measurements. Herein, we performed conditional radar-rain gauge merging to obtain the optimal rainfall value distribution. By using the cokriging interpolation method, kriged gauge rainfall, and kriged radar rainfall data were obtained, which were then combined with radar rainfall data to yield the adjusted spatial rainfall. Radar-rain gauge conditional merging with cokriging interpolation provided reasonably well-adjusted spatial rainfall pattern.

Cite this article as:
R. Hambali, D. Legono, R. Jayadi, and S. Oishi, “Improving Spatial Rainfall Estimates at Mt. Merapi Area Using Radar-Rain Gauge Conditional Merging,” J. Disaster Res., Vol.14, No.1, pp. 69-79, 2019.
Data files:
  1. [1] BNPB, “Data Informasi Bencana Indonesia (Indonesian Disaster Information Data),” 2018. [accessed March 28, 2018]
  2. [2] L. J. Cobar, D. Legono, and K. Miyamoto, “Modeling of information flow for early warning in mount Merapi area, Indonesia,” J. Disaster Res., Vol.11, No.1, pp. 60-71, 2016.
  3. [3] S. Burcea, S. Cheval, A. Dumitrescu, B. A. Antonescu, A. Bell, and T. Breza, “Comparison between radar estimations and rain gauge precipitations in the Moldavian Plateau (Romania),” Environ. Eng. Manag. J., Vol.11, No.4, pp. 723-731, 2012.
  4. [4] S.-S. Yoon and D.-H. Bae, “Optimal Rainfall Estimation by Considering Elevation in the Han River Basin, South Korea,” J. Appl. Meteorol. Climatol., Vol.52, No.4, pp. 802-818, 2013.
  5. [5] R. Hambali, H. G. Mawandha, D. Legono, R. Jayadi, and S. Oishi, “Rain Behaviour at Mt. Merapi Area as Observed by XMPR and ARR,” Appl. Mech. Mater., Vol.881, pp. 34-41, 2018.
  6. [6] S. Sebastianelli, F. Russo, F. Napolitano, and L. Baldini, “On precipitation measurements collected by a weather radar and a rain gauge network,” Nat. Hazards Earth Syst. Sci., Vol.13, No.3, pp. 605-623, 2013.
  7. [7] G. Delrieu, A. Wijbrans, B. Boudevillain, D. Faure, L. Bonnifait, and P.-E. Kirstetter, “Geostatistical radar-raingauge merging: A novel method for the quantification of rain estimation accuracy,” Adv. Water Resour., Vol.71, pp. 110-124, 2014.
  8. [8] B. Boudevillain, G. Delrieu, A. Wijbrans, and A. Confoland, “A High-Resolution Rainfall Re-analysis Based on Radar–Raingauge Merging in the Cévennes-Vivarais Region, France,” J. Hydrol., Vol.541, pp. 14-23, 2016.
  9. [9] E. Moreau, J. Testud, and E. Le Bouar, “Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates,” Adv. Water Resour., Vol.32, No.7, pp. 1011-1019, 2009.
  10. [10] C. Berndt, E. Rabiei, and U. Haberlandt, “Geostatistical Merging of Rain gauge and Radar Data for High Temporal Resolutions and Various Station Density Scenarios,” J. Hydrol., Vol.508, pp. 88-101, 2014.
  11. [11] P. M. Austin, “Relation Between Measured Radar Reflectivity and Surface Rainfall,” Monthly Weather Review, Vol.115, No.5, pp. 1053-1070, 1987.
  12. [12] G. J. Ciach and W. F. Krajewski, “On the Estimation of Radar Rainfall Error Variance,” Adv. Water Resour., Vol.22, No.6, pp. 585-595, 1999.
  13. [13] E. Goudenhoofdt and L. Delobbe, “Evaluation of Radar-Gauge Merging Methods For Quantitative Precipitation Estimates,” Hydology Earth Syst. Sci., Vol.13, No.2, pp. 195-203, 2009.
  14. [14] F. W. Chen and C. W. Liu, “Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan,” Paddy Water Environ., Vol.10, No.3, pp. 209-222, 2012.
  15. [15] M. F. Hutchinson, “Interpolation of rainfall data with thin plate smoothing splines – Part I: Two dimensional smoothing of data with short range correlation,” J. Geogr. Inf. Decis. Anal., Vol.2, No.2, pp. 139-151, 1998.
  16. [16] U. Haberlandt, “Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event,” J. Hydrol., Vol.332, No.1-2, pp. 144-157, 2007.
  17. [17] J. S. Marshall and W. M. Palmer, “The Distribution Of Raindrops With Size,” J. Meteorol., Vol.5, No.4, pp. 165-166, 1948.
  18. [18] M. Maki, K. Maruyama, K. Iwanami, R. Misumi, and T. Maesaka, “Comparison of X-band Multi-Parameter Radar Rainfall Estimates With Conventional Radar Rainfall Estimates Adjusted With Raingauge Network Data,” Proc. of 4th European Conf. on Radar in Meteorology and Hydrology (ERAD) 2006, 2006.
  19. [19] M. Maki, S.-G. Park, and V. N. Bringi, “Effect of natural variations in rain drop size distributions on rain rate estimators of 3 cm wavelength polarimetric radar,” J. Meteorol. Soc. Japan, Vol.83, No.5, pp. 871-893, 2005.
  20. [20] K. Hirano, M. Maki, T. Maesaka, R. Misumi, K. Iwanami, and S. Tsuchiya, “Composite rainfall map from C-band conventional and X-band dual-polarimetric radars for the whole of Japan,” 8th European Conf. on Radar in Meteorology and Hydrology, pp. 1-5, 2014.
  21. [21] Z. Shi, H. Chen, V. Chandrasekar, and J. He, “Deployment and Performance of an X-band Dual-Polarization Radar During The Southern China Monsoon Rainfall Experiment,” Atmosphere, Vol.9, No.1, 2017.
  22. [22] S.-G. Park, M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, “Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part II: Evaluation and Application,” J. Atmos. Ocean. Technol., Vol.22, No.11, pp. 1633-1655, 2005.
  23. [23] C. B. Young et al., “An Evaluation of NEXRAD Precipitation Estimates in Complex Terrain,” J. Geophys. Res. Atmos., Vol.104, No.D16, pp. 19691-19703, 1999.
  24. [24] U. Germann, G. Galli, M. Boscacci, and M. Bolliger, “Radar Precipitation Measurement in a Mountainous Region,” Q. J. R. Meteorol. Soc., Vol.132, No.618 A, pp. 1669-1692, 2006.
  25. [25] P. C. Shakti et al., “Rainfall Estimation in Mountainous Regions Using X-band Polarimetric Weather Radar,” The 7th European Conf. on Radar in Meteorology and Hydrology, 2012.
  26. [26] S. Sinclair and G. Pegram, “Combining Radar and Rain Gauge Rainfall Estimates Using Conditional Merging,” Atmos. Sci. Lett., Vol.6, No.1, pp. 19-22, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Feb. 21, 2019