single-dr.php

JDR Vol.14 No.1 pp. 27-39
(2019)
doi: 10.20965/jdr.2019.p0027

Paper:

Eruption Pattern and a Long-Term Magma Discharge Rate over the Past 100 Years at Kelud Volcano, Indonesia

Fukashi Maeno*1,†, Setsuya Nakada*1,*2, Mitsuhiro Yoshimoto*3, Taketo Shimano*4, Natsumi Hokanishi*1, Akhmad Zaennudin*5, and Masato Iguchi*6

*1Earthquake Research Institute, The University of Tokyo
1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Corresponding author

*2National Research Institute for Earth Science and Disaster Resilience, Ibaraki, Japan

*3Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan

*4Graduate School of Environmental and Disaster Research, Tokoha University, Shizuoka, Japan

*5Centre for Volcanology and Geological Hazard Mitigation, Bandung, Indonesia

*6Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University, Kagoshima, Japan

Received:
August 29, 2018
Accepted:
December 13, 2018
Published:
February 1, 2019
Keywords:
plinian eruption, discharge rate, tephra, volume, Kelud
Abstract

Kelud Volcano is among the most active volcanoes in Indonesia, with repeated explosive eruptions throughout its history. Here, we reconstructed the relationship between the repose period and the cumulative volume of erupted material over the past 100 years and estimated the long-term magma discharge rate and future eruptive potential and hazards. Tephra data and eruption sequences described in historical documents were used to estimate the volume and mass discharge rate. The volumes of the 1901, 1919, 1951, 1966, 1990, and 2014 eruptions were estimated as 51–296 × 106 m3. The mass discharge rates were estimated to be on the order of 107 kg/s for the 1919, 1951, and 2014 eruptions and the order of 106 kg/s for the 1966 and 1990 eruptions. Based on a linear relationship between the repose period and cumulative erupted mass, the long-term mass discharge rate was estimated as ∼ 1.5 × 1010 kg/year, explaining the features of the larger eruptions (1919, 1951, and 2014) but not those of the smaller eruptions (1966 and 1990). This estimate is relatively high compared to other typical basaltic-andesitic subduction-zone volcanoes. This result provides important insights into the evolution of magmatic systems and prediction of future eruptions at Kelud Volcano.

Cite this article as:
F. Maeno, S. Nakada, M. Yoshimoto, T. Shimano, N. Hokanishi, A. Zaennudin, and M. Iguchi, “Eruption Pattern and a Long-Term Magma Discharge Rate over the Past 100 Years at Kelud Volcano, Indonesia,” J. Disaster Res., Vol.14 No.1, pp. 27-39, 2019.
Data files:
References
  1. [1] K. Nakamura, “Volcano-stratigraphic study of Oshima volcano, Izu,” Bull. Earthquake Res. Inst. Tokyo Univ., Vol.42, pp. 649-728, 1964.
  2. [2] C. R. Bacon, “Time predictable bimodal volcanism in the Coso range, California,” Geology, Vol.10, pp. 65-69, 1982.
  3. [3] G. Wadge, “Steady stage volcanism: evidence from eruption histories of polygenetic volcanoes,” J. Geophys. Res., Vol.87, No.B5, pp. 4035-4049, 1982.
  4. [4] S. A. Carn, “The Lamomgan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards,” J. Volcanol. Geotherm. Res., Vol.95, pp. 81-108, 2000.
  5. [5] J. F. Luhr and I. S. E. Carmichael, “The Colima volcanic complex, Mexico: III, ash- and scoria-fall deposits from the upper slopes of Volcan Colima,” Contrib. Mineral. Petrol., Vol.80, pp. 262-275, 1982.
  6. [6] L. Civetta, Y. Cornette, P. Y. Gillot, and G. Orsi, “The eruptive history of Pantelleria (Sicily Channel) in the last 50 ka,” Bull. Volcanol., Vol.50, pp. 47-57, 1988.
  7. [7] C.-Y. King, “Volume predictability of historical eruptions at Kilauea and Mauna Loa volcanoes,” J. Volcanol. Geotherm. Res., Vol.38, pp. 281-285, 1989.
  8. [8] B. E. Hill, C. B. Connor, M. S. Jarzemba, P. C. La Femina, M. Navarro, and W. Strauch, “1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions,” Geol. Soc. Am. Bull, Vol.110, pp. 1231-1241, 1998.
  9. [9] K. Fontijn, F. Costa, I. Sutawidjaja, C. G. Newhall1, and J. S. Herrin, “A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards,” Bull. Volcanol., Vol.77, No.59, doi:10.1007/s00445-015-0943-x, 2015.
  10. [10] Global Volcanism Program, “Kelut volcano (263280),” E. Venzke (ed.), Volcanoes of the World, v.4.7.0, Smithsonian Institution, 2013, https://volcano.si.edu/volcano.cfm?vn=263280, doi: https://doi.org/10.5479/si.GVP.VOTW4-2013 [accessed July 3, 2018]
  11. [11] K. Kusumadinata, “Catalogue of references on Indonesian volcanoes with eruption in historical time,” Volcanol. Surv. Indon, p. 820, 1979.
  12. [12] J.-D. Thouret, K. E. Abdurachman, J.-L. Bourdier, and S. Bronto, “Origin, characteristics, and behavior of lahars following the 1990 eruption at Kelud volcano, eastern Java (Indonesia),” Bull. Volcanol., Vol.59, pp. 460-480, 1998.
  13. [13] C. G. Newhall and S. Self, “The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism,” J. Geophys. Res., Vol.87, C2, pp. 1231-1238, 1982.
  14. [14] K. Ishihara, Surono, M. Hendrasto, and S. Hidayati, “Long-term forecasting of volcanic eruption in case study of Kelud volcano, Indonesia,” Annul. Disas. Prev. Res. Inst., Kyoto Univ. 54-B, pp. 209-214, 2011 (in Japanese with English abstract).
  15. [15] Direktorat Vulkanologi, “Data Dasar Gunungapi Indonesia,” 1990.
  16. [16] L. Houwink, “Verslag van den onderzoek naar aanleiding van de uitbarsting van den vulkaan Keloet in den nacht 22 op den 23 mei 1901,” Mijnwz Nederlands Oost-Indie Jaarboek, pp. 126-136, 1901.
  17. [17] G. L. L. Kemmerling, “De uitbarsting van den G. Keloet in den nacht van den 19den op den 20sten Mei 1919,” Vulkanol. Meded., No.2, 1921 (translated to English).
  18. [18] D. Hadikusumo, “Report on the volcanological research and volcanic activity in Indonesia for the period 1950-1957,” Volcanol. Surv. Indon. Bull., Vol.100, pp. 54-63, 1957.
  19. [19] L. Djoharman, “Laporan taksiran djumlah piroklastika letusan Gn. Kelut tanggal, April 26, 1966,” Direktorat Vulkanologi, 1966 (translated to English).
  20. [20] D. Hadikusumo, “The rise and drop of Mt. Kelut crater bottom after paroxysmal eruptions,” Tectonophysics, Vol.23, pp. 341-347, 1974.
  21. [21] M. Alzwar, “Gunung Kelud,” Berita Berkala Vulkanologi, Edisi Khusus, 108, Direktorat Vulkanologi, Volcanol. Surv. Indonesia, Bandung, p. 60, 1985.
  22. [22] A. D. Wirakusumah, “Some studies of volcano, petrology and structure of Mt. Kelut, East Java, Indonesia,” Ph.D. Thesis, Victoria University of Wellington, p. 460, 1991.
  23. [23] A. D. Wirakusumah and L. Hendrajaja, “Evolution of the 1990 Kelut eruption energy based on the volume of ejected volcanic materials,” Direktorat Vulkanologi, 1992.
  24. [24] J.-L. Bourdier, I. Pratomo, J.-C. Thouret, G. Boudon, and P. M. Vincent, “Observations, stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano, Indonesia,” J. Volcanol. Geotherm. Res., Vol.79, pp. 181-203, 1997.
  25. [25] S. Hidayati, A. Basuki, K. Kristianto, and I. Mulyana, “Emergence of lava dome from the crater lake of Kelud volcano,” J. Geologi Indonesia, Vol.4, No.4, pp. 229-238, 2009.
  26. [26] Badan Geologi, “Data Dasar Gunungapi Indonesia,” 2nd edn. 981, 2011.
  27. [27] Ph. Lesage and Surono, “Seismic precursors of the February 10, 1990 eruption of Kelut volcano, Java,” J. Volcanol. Geotherm. Res., Vol.65, pp. 135-146, 1995.
  28. [28] Global Volcanism Program, “Report on Kelut (Indonesia),” L. McClelland (ed.), Bulletin of the Global Volcanism Network, Vol.15, No.9, Smithsonian Institution, doi: http://dx.doi.org/10.5479/si.GVP.BGVN199009-263280, 1990.
  29. [29] D. M. Pyle, “The thickness, volume and grainsize of tephra fall deposits,” Bull. Volcanol., Vol.51, pp. 1-15, 1989.
  30. [30] J. Fierstein and M. Nathenson, “Another look at the calculation of fallout tephra volumes,” Bull. Volcanol., Vol.54, pp. 156-167, 1992.
  31. [31] E. De Belizal, F. Lavigne, J. C. Gaillard, D. Grancher, I. Pratomo, and J.-C. Komorowski, “The 2007 eruption of Kelut volcano (East Java, Indonesia): Phenomenology, crisis management and social response,” Geomorphology, Vol.136, pp. 165-175, 2012.
  32. [32] L. Siebert, T. Simkin, and P. Kimberly, “Volcanoes of the World,” 3rd edition, University of California Press, Los Angeles, p. 551, 2011.
  33. [33] N. I. Kristiansen, A. J. Prata, A. Stohl, and S. A. Carn, “Stratospheric volcanic ash emissions from the 13 February 2014 Kelut eruption,” Geophy. Res. Lett., Vol.42, pp. 588-596, 2015.
  34. [34] C. Caudron, B. Taisne, M. Garces, L. P. Alexis, and P. Mialle, “On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption,” Gephy. Res. Lett., Vol.42, pp. 6614-6621, 2015.
  35. [35] Y. Nakashima, K. Heki, A. Takeo, M. N. Cahyadi, A. Aditiya, and K. Yoshizawa, “Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionosphereic total electron contents and seismic signals,” Earth Planet. Sci. Lett., Vol.434, pp. 112-116, 2016.
  36. [36] F. Maeno, S. Nakada, M. Yoshimoto, T. Shimano, N. Hokanishi, A. Zaennudin, and M. Iguchi, “A sequence of a plinian eruption preceded by dome destruction at Kelud volcano, Indonesia, on February 13, 2014, revealed from tephra fallout and pyroclastic density current deposits,” J. Volcanol. Geotherm. Res., (in press).
  37. [37] C. Bonadonna and A. Costa, “Estimating the volume of tephra deposits: a new simple strategy,” Geology, Vol.40, pp. 415-418, 2012.
  38. [38] A. J. Jeffery, R. Gertisser, V. R. Troll, E. M. Jolis, B. Dahren, C. Harris, A. G. Tindle, K. Preece, B. O’Driscoll, H. Humaida, and J. P. Chadwick, “The pre-erupting magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia,” Contrib. Mineral. Petrol., Vol.16, pp. 275-308, 2013.
  39. [39] S. Carey and H. Sigurdsson, “The intensity of plinian eruption,” Bull. Volcanol., Vol.51, pp. 28-40, 1989.
  40. [40] T. Kozono, H. Ueda, T. Ozawa, T. Koyaguchi, E. Fujita, A. Tomiya, and Y. J. Suzuki, “Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations,” Bull. Volcanol., Vol.75, No.695, 2013.
  41. [41] Global Volcanism Program, “Report on Kelud (Indonesia): February 2014,” R. Wunderman (ed.), Bulletin of the Global Volcanism Network, Vol.39, No.2, Smithsonian Institution, 2014.
  42. [42] A. R. Mulyana, A. Nasution, A. Martono, A. D. Sumpena, Purwoto, and M. S. Santoso, “Volcanic hazards map of Kelud volcano, East Java Province,” Direktorat Vulkanologi dan Mitigasi Bencana Geologi, 2004.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024