Paper:
Experimental Study on Dam-Break Hydrodynamic Characteristics Under Different Conditions
Hui Liu* and Haijiang Liu**,†
*Ocean College, Zhejiang University
866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
**College of Civil Engineering and Architecture, Zhejiang University
866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
†Corresponding author
- [1] G. Lauber and W. H. Hager, “Experiments to dambreak wave: Horizontal channel,” J. of Hydraulic research, Vol.36, No.3, pp. 291-307, 1998.
- [2] N. A. K. Nandasena, R. Paris, and N. Tanaka, “Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis),” Marine Geology, Vol.281, No.1, pp. 70-84, 2011a.
- [3] H. Liu, T. Shimozono, T. Takagawa, A. Okayasu, H. M. Fritz, S. Sato, and Y. Tajima, “The 11 march 2011 tohoku tsunami survey in rikuzentakata and comparison with historical events,” Pure & Applied Geophysics, Vol.170, No.6-8, pp. 1033-1046, 2013.
- [4] J. Goff, R. Weiss, C. Courtney, and D. Dominey-Howes, “Testing the hypothesis for tsunami boulder deposition from suspension,” Marine Geology, Vol.277, No.1, pp. 73-77, 2010.
- [5] K. Goto, S. A. Chavanich, F. Imamura, P. Kunthasap, T. Matsui, K. Minoura, D. Sugawara, and H. Yanagisawa, “Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand,” Sedimentary Geology, Vol.202, No.4, pp. 821-837, 2007.
- [6] J. Nott, “Waves, coastal boulder deposits and the importance of the pre-transport setting,” Earth and Planetary Science Letters, Vol.210, No.1, pp. 269-276, 2003.
- [7] F. Imamura, K. Goto, and S. Ohkubo, “A numerical model for the transport of a boulder by tsunami,” J. of Geophysical Research: Oceans, Vol.113, No.C1, pp. 236-254, 2008.
- [8] N. A. K. Nandasena, R. Paris, and N. Tanaka, “Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in LhokNga, West Banda Aceh (Sumatra, Indonesia),” Computers & Geosciences, Vol.37, No.9, pp. 1391-1399, 2011b.
- [9] H. Liu, T. Sakashita, and S. Sato, “An experimental study on the tsunami boulder movement,” Coastal Engineering Procs. (Seoul, Korea), pp. 616-623, 2014.
- [10] N. A. K. Nandasena and N. Tanaka, “Boulder transport by high energy: Numerical model-fitting experimental observations,” Ocean Engineering, Vol.57, pp. 163-179, 2013.
- [11] R. F. Dressler, “Hydraulic resistance effect upon the dam-break functions,” J. of Research of the National Bureau of Standards, Vol.49, No.3, pp. 217-225. 1952.
- [12] B. Lin, Z. Gong, and L. Wang, “Dam-site hydrographs due to sudden release,” Scientia Sinica, Vol.23, No.12, pp. 1570-1582, 1980.
- [13] A. Ritter, “Die fortpflanzung de wasserwellen,” Zeitschrift Verein Deutscher Ingenieure, Vol.36, No.33, pp. 947-954, 1892. (in German)
- [14] J. J. Stoker, “Water Waves,” New York: Interscience Publ. Inc, 1957.
- [15] T. J. Chang, H. M. Kao, K. H. Chang, and M. H. Hsu, “Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics,” J. of Hydrology, Vol.408, No.1, pp. 78-90, 2011.
- [16] H. Ozmen-Cagatay and S. Kocaman, “Dam-break flow in the presence of obstacle: experiment and CFD simulation,” Engineering applications of computational fluid mechanics, Vol.5, No.4, pp. 541-552, 2011.
- [17] T. Shigematsu, P. L. F. Liu, and K. Oda, “Numerical modeling of the initial stages of dam-break waves,” J. of Hydraulic Research, Vol.42, No.2, pp. 183-195, 2004.
- [18] V. I. Bukreev and A. V. Gusev, “Initial stage of the generation of dam-break waves,” Doklady Physics, Vol.50, No.4, pp. 200-203, 2005.
- [19] S. Shafiei, B. W. Melville, and A. Y. Shamseldin, “Experimental investigation of tsunami bore impact force and pressure on a square prism,” Coastal Engineering, Vol.110, pp. 1-16, 2016.
- [20] R. F. Dressler, “Comparison of theories and experiments for the hydraulic dam-break wave,” Int. Association of Sciences Hydrology, Vol.3, No.38, pp. 319-328, 1954.
- [21] P. K. Stansby, A. Chegini, and T. C. D. Barnes, “The initial stages of dam-break flow,” J. of Fluid Mechanics, Vol.374, pp. 407-424, 1998.
- [22] H. Ozmen-Cagatay and S. Kocaman, “Experimental study of tailwater level effects on dam break flood wave propagation,” Procs. of River Flow 2008 (Cesme, Turkey), pp. 635-644, 2008.
- [23] N. A. K. Nandasena, Y. Sasaki, and N. Tanaka, “Modeling field observations of the 2011 Great East Japan tsunami: Efficacy of artificial and natural structures on tsunami mitigation,” Coastal Engineering, Vol.67, pp. 1-13, 2012.
- [24] H. Yanagisawa, S. Koshimura, K. Goto, T. Miyagi, F. Imamura, A. Ruangrassamee, and C. Tanavud, “The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis,” Estuarine, Coastal and Shelf Science, Vol.81, No.1, pp. 27-37, 2009.
- [25] I. M. Jánosi, D. Jan, K. G. Szabó, and T. Tél, “Turbulent drag reduction in dam-break flows,” Experiments in Fluids, Vol.37, No.2, pp. 219-229, 2004.
- [26] S. Kocaman and H. Ozmen-Cagatay, “Investigation of dam-break induced shock waves impact on a vertical wall,” J. of Hydrology, Vol.525, pp. 1-12, 2015a.
- [27] J. D. Ramsden, “Tsunamis: forces on a vertical wall caused by long waves, bores, and surges on a dry bed,” Ph.D. Dissertation, California Institute of Technology, p. 251, 1993.
- [28] V. I. Bukreev, A. V. Gusev, A. A. Malysheva, and I. A. Malysheva, “Experimental verification of the gas-hydraulic analogy with reference to the dam-break problem,” Fluid Dynamics, Vol.39, No.5, pp. 801-809, 2004.
- [29] S. Kocaman, H. Guzel, S. Evangelista, and H. Ozmen-Cagatay, “The influence of tailwater depth on 3D dam-break wave propagation in an enclosed domain,” Proc. of the Wseas Int. Conf. on Environmental and Geological Science and Engineering (Salerno, Italy), pp. 173-177, 2015b.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.