single-dr.php

JDR Vol.10 No.1 pp. 25-34
(2015)
doi: 10.20965/jdr.2015.p0025

Paper:

Development and Operation of a Regional Moment Tensor Analysis System in the Philippines: Contributions to the Understanding of Recent Damaging Earthquakes

Baby Jane T. Punongbayan*1, Hiroyuki Kumagai*2,
Nelson Pulido*3, Jun D. Bonita*1, Masaru Nakano*4,
Tadashi Yamashina*5, Yuta Maeda*2, Hiroshi Inoue*3,
Arnaldo A. Melosantos*1, Melquiades F. Figueroa*1,
Ponczh Colleen M. Alcones*1, Karl Vincent C. Soriano*1,
Ishmael C. Narag*1, and Renato U. Solidum, Jr.*1

*1Philippine Institute of Volcanology and Seismology (PHIVOLCS), PHIVOLCS Building, C.P. Garcia Ave, Univ. of the Philippines, Diliman, Quezon City 1101, Philippines

*2Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

*3National Research Institute for Earth Science and Disaster Prevention (NIED), Ibaraki, Japan

*4R&D Center for Earthquake and Tsunami, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan

*5Kochi Earthquake Observatory, Faculty of Science, Kochi University, Kochi, Japan

Received:
August 8, 2014
Accepted:
December 8, 2014
Published:
February 1, 2015
Keywords:
earthquake monitoring, source parameters, waveform inversion, Negros, Bohol, Samar, Philippine Trench
Abstract
A network of 10 satellite-telemetered broadband stations was established under a cooperative project between Japan and the Philippines, and a source analysis system based on waveform inversion of regional seismograms was adapted to operationalize a regional moment tensor analysis of Philippine earthquakes. This study presents the source information generated by the system for recent damaging earthquakes: the Mw6.7 Negros and Mw7.6 offshore Samar in 2012, and the Mw7.2 in Bohol in 2013. Results show that the Negros event was generated by shallow NE–SW thrust faulting with a small strike-slip component, and that the centroid was located slightly offshore. The Samar event occurred in relation to an outer-trench thrust fault within the Philippine Sea Plate, adjacent to a part of the Philippine Trench that has relatively low seismicity. Our centroid moment tensor (CMT) solutions show that the Samar event triggered distinct clusters of outer-rise normal and thrust aftershocks, which we explain as being consistent with a Coulomb stress change in the area. Finally, we infer that the previously unidentified fault zone that generated the Bohol earthquake has a length of ∼ 100 km, is oriented ENE–WSW, transects parts of Bohol, and extends offshore towards Cebu. These examples show how recent improvements in Philippine earthquake monitoring could contribute to the characterization of earthquake sources and in the understanding of the seismotectonics of the area.
Cite this article as:
B. Punongbayan, H. Kumagai, N. Pulido, J. Bonita, M. Nakano, T. Yamashina, Y. Maeda, H. Inoue, A. Melosantos, M. Figueroa, P. Alcones, K. Soriano, I. Narag, R. Solidum, and Jr., “Development and Operation of a Regional Moment Tensor Analysis System in the Philippines: Contributions to the Understanding of Recent Damaging Earthquakes,” J. Disaster Res., Vol.10 No.1, pp. 25-34, 2015.
Data files:
References
  1. [1] PHIVOLCS Active Faults Map, 2000,
    http://www.phivolcs.dost.gov.ph/index.php?option=com_content&view=article&id=78&Itemid=500024 [accessed August 5, 2014]
  2. [2] M. L. P. Bautista and K. Oike, “Estimation of the magnitudes and epicenters of Philippine historical earthquakes,” Tectonophysics, Vol.317, pp. 137-169, 2000.
  3. [3] D. A. Storchak, D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W. H. K. Lee, A. Villaseñor, and P. Bormann, “Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009),” Seism. Res. Lett., Vol.84, No.5, pp. 810-815, 2013.
  4. [4] C. Allen, “Circum-Pacific faulting in the Philippines-Taiwan region,” Journal of Geophysical Research, Vol.67, pp. 4795-4812, 1962.
  5. [5] H. Tsutsumi and J. S. Perez, “Large-scale active fault map of the Philippine fault based on aerial photograph interpretation,” Active Faults Research, No.39, pp. 29-37, 2013.
  6. [6] A. M. Dziewonski, T. A. Chou, and J. H. Woodhouse, “Determination of earthquake source parameters from waveform data for studies of global and regional seismicity,” J. Geophys. Res., Vol.86, pp. 2825-2852, 1981.
  7. [7] G. Ekström, M. Nettles, and A. M. Dziewonski, “The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes,” Phys. Earth Planet. Inter., Vol.200-201, pp. 1-9, 2012.
  8. [8] A. A. Melosantos, K. V. C. Soriano, P. C. M. Alcones, J. U. Pantig, J. D. Bonita, I. C. Narag, H. Kumagai, and H. Inoue, “Performance of Broadband Seismic Network of the Philippines,” Journal of Disaster Research, Vol.10, No.1, 2015 (this number).
  9. [9] GEOFON Data Centre, “GEOFON Seismic Network,” Deutsches GeoForschungsZentrum GFZ, Other/Seismic Network, 1993, doi:10.14470/TR560404.
  10. [10] M. Nakano, H. Kumagai, and H. Inoue, “Waveform inversion in the frequency domain for the simultaneous determination of an earthquake source mechanism and moment function,” Geophys. J. Int., Vol.173, pp. 1000-1011, 2008.
  11. [11] W. Hanka, J. Saul, B. Weber, J. Becker, P. Harjadi, Fauzi, and GITEWS Seismology Group, “Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond,” Nat. Hazards Earth Syst. Sci., Vol.10, pp. 2611-2622, 2010.
  12. [12] M. Bouchon, “Discrete wave number representation of elastic wave fields in three-space dimensions,” J. Geophys. Res., Vol.84, Issue B7, pp. 3609-3614, 1979.
  13. [13] B. L. N. Kennet, E. R. Engdah, and R. Buland, “Constraints on seismic velocities in the Earth from travel times,” Geophys. J. Int., Vol.122, pp. 108-124, 1995.
  14. [14] J. D. Bonita, H. Kumagai, and M. Nakano, “Regional Moment Tensor Analysis in the Philippines: CMT Solutions in 2012-2013,” Journal of Disaster Research, Vol.10, No.1, 2015 (this issue).
  15. [15] M. I. T. Abigania, M. C. Arpa, J. Beliran, M. A. Bornas, M. Cahulogan, S. Catane, A. Daag, P. D. Decierdo, L. R. Del Monte, F. Garcia, V. Hernandez, R. Jorgio, R. Lamela, M. P. Lasala, E. A. Mangao, A. Melosantos, M. Pagtalunan, H. Peñarubia, B. J. T. Punongbayan, and D. Rivera, “Geologic Impacts of the 06 February 2012 Negros Oriental Earthquake in Negros Oriental and Cebu QRT Report of Investigation Conducted on 07-27 February 2012,” Internal Report, PHIVOLCS, Quezon City, Philippines, 50pp., 2012.
  16. [16] National Disaster Risk Reduction and Management Council Situational Report No.22, “re: Effects of the 6.9 Earthquake in Negros Oriental, Quezon City, Philippines,” 17pp., 2012.
  17. [17] USGS Significant Earthquakes Archive,
    http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/usb0007wgq/usb0007wgq.php [accessed June 21, 2014]
  18. [18] Geofon Program,
    http://geofon.gfz-potsdam.de/eqinfo/event.php?id=gfz2012cobr [accessed June 21, 2014]
  19. [19] PHIVOLCS Earthquake Catalogue.
  20. [20] P. C. Thenhaus, S. L. Hanson, S. T. Algermissen, B. C. Bautista, M. L. P. Bautista, B. J. T. Punongbayan, A. R. Rasdas, J. T. E. Nillos, and R. S. Punongbayan, “Estimates of the regional ground-motion hazard in the Philippines,” Proc., Workshop on Natural Disaster Mitigation in the Philippines, DOST-PHIVOLCS, pp. 45-60, 1994.
  21. [21] A. Daag, T. Bacolcol, T. Nakata, M. Cahulogan, M. I. Abigania, D. Rivera, R. L. Villahermosa, C. Deposoy, and J. E. Ramos, “Sub-Aerial and Sub-Marine Landslides Triggered by the February 6, 2012 Negros Oriental Earthquake: Assessment and Implications,” Proc., GEOCON2012, Geological Society of the Philippines, Makati City, p. 32, 2012.
  22. [22] M. Aurelio, K. J. Taguibao, J. D. Dianala, R. Sarande, and A. Lucero, Jr., “The Magnitude 6.9 Negros Oriental Earthquake of 6 February 2012: Insights from Earthquake, Offshore Seismic and Onshore Structural Data,” Proc., GEOCON2012, Geological Society of the Philippines, Makati City, p. 28, 2012.
  23. [23] E. P. Arnold (Ed.), “SEASEE Series on Seismology Vol.IV: Philippines,” Southeast Asian Association of Seismology and Earthquake Engineering, p. 843, 1985.
  24. [24] F. O. Strasser, M. C. Arango, and J. J. Bommer, “Scaling of the Source Dimensions of Interface and Intraslab Subduction-zone Earthquakes with Moment Magnitude,” Seismological Res. Lett., Vol.81, pp. 941-950, 2010.
  25. [25] L. Ye, T. Lay and H. Kanamori, “Intraplate and interplate faulting interactions during the August 31, 2012, Philippine Trench earthquake (Mw7.6) sequence,” Geophys. Res. Lett., Vol.39, L24310, 2012.
  26. [26] D. H. Christensen and L. J. Ruff, “Seismic coupling and outer rise earthquakes,” J. Geophys. Res., Vol.93, No.B11, pp. 13421-13444, 1988.
  27. [27] Bohol READY Hazard Maps, 2007,
    http://www.phivolcs.dost.gov.ph/index.php?option=com_content&view=article&id=465&Itemid=500028 [accessed August 5, 2014]
  28. [28] I. Narag and E. Banganan, “Groundshaking Hazards Mapping for Bohol, Philippines,” READY Project Internal Report, PHIVOLCS, 2007.
  29. [29] PHIVOLCS Earthquake Intensity Scale,
    http://www.phivolcs.dost.gov.ph/index.php?option=com_phocadownload&view=category&id=13:peis&Itemid=44 [accessed August 5, 2014]
  30. [30] PHIVOLCS Report on Bohol Earthquake, 2013,
    http://www.phivolcs.dost.gov.ph/index.php?option=com phocadownload&view=file&id=73:magnitude-72-bohol-earthquake&Itemid=44 [accessed August 5, 2014]
  31. [31] USGS Significant Earthquakes Archive,
    http://comcat.cr.usgs.gov/earthquakes/eventpage/usb000kdb4 [accessed August 5, 2014]
  32. [32] GFZ Event Page,
    http://geofon.gfz-potsdam.de/eqinfo/event.php?id=gfz2013uejt [accessed August 5, 2014]
  33. [33] T. Kobayashi, “Remarkable ground uplift and reverse fault ruptures for the 2013 Bohol earthquake (Mw7.1), Philippines, revealed by SAR pixel offset analysis,” Geoscience Letters, Vol.1, p. 7, 2014.
  34. [34] P. Wessel, W. H. F. Smith, R. Scharroo, J. F. Luis, and F. Wobbe, “Generic Mapping Tools: Improved version released,” EOS Trans. AGU, Vol.94, pp. 409-410, 2013.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 20, 2024