Paper:
An Experimental Data Handling System for Ensemble Numerical Weather Predictions Using a Web-Based Data Server and Analysis Tool “Gfdnavi”
Shigenori Otsuka*, Seiya Nishizawa**, Takeshi Horinouchi***,
and Shigeo Yoden*
*Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo, Kyoto 606-8502, Japan
**RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
***Division of Earth System Science, Graduate School of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
- [1] R. Mureau, F. Molteni, and T. N. Palmer, “Ensemble prediction using dynamically conditioned perturbations,” Quar. J. Roy. Meteor. Soc., Vol.119, pp. 299-323, 1993.
- [2] WMO, “Accelerating improvements in the accuracy of one-day to two-week high-impact weather forecasts for the benefit of society, the economy and the environment: THORPEX,” 2005,
http://www.wmo.int/pages/prog/arep/wwrp/new/documents/brochure e.pdf - [3] [accessed Jan. 17, 2013]
- [4] T. Horinouchi, S. Nishizawa, C. Watanabe, A. Tomobayashi, S. Otsuka, T. Koshiro, Y.-Y. Hayashi, and GFD Dennou Club, “Gfdnavi, web-based data and knowledge server software for geophysical fluid sciences, Part I: Rationales, stand-alone features, and supporting knowledge documentation linked to data,” Lecture Notes in Computer Science, Vol.6913, pp. 93-104, 2010.
- [5] S. Nishizawa, T. Horinouchi, C. Watanabe, Y. Isamoto, A. Tomobayashi, S. Otsuka, and GFD Dennou Club, “Gfdnavi, webbased data and knowledge server software for geophysical fluid sciences, Part II: RESTful web services and object-oriented programming interface,” Lecture Notes in Computer Science, Vol.6193, pp. 105-116, 2010.
- [6] T. N. Palmer, “The economic value of ensemble forecasts as a tool for risk assessment: From days to decades,” Quar. J. Roy. Meteor. Soc., Vol.128, pp. 747-774, 2002.
- [7] S. Yoden, K. Saito, T. Takemi, and S. Nishizawa, “New stages of international collaborations which serves for mitigation of meteorological disasters in Southeast Asia,” Tenki, Vol.55, pp. 705-708, 2008 (in Japanese).
- [8] P. J. Webster, “Myanmar’s deadly daffodil,” Nature Geoscience, Vol.1, pp. 488-490, 2008.
- [9] H. M. Fritz, C. D. Blount, S. Thwin, M. K. Thu, and N. Chan, “Cyclone Nargis storm surge in Myanmar,” Nature Geoscience, Vol.2, pp. 448-449, 2009.
- [10] K. Saito, J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, “Nonhydrostatic atmospheric models and operational development at JMA,” J. Meteor. Soc. Japan, Vol.85B, pp. 271-304, 2007.
- [11] A. F. Blumberg and G. L. Mellor, “A description of a three-dimensional coastal ocean circulation model,” In Threedimensional coastal ocean models, pp. 1-16, American Geophysical Union, 1987.
- [12] K. Saito, T. Kuroda, M. Kunii, and N. Kohno, “Numerical simulation of Myanmar cyclone Nargis and the associated storm surge Part II: Ensemble prediction,” J. Meteor. Soc. Japan, Vol.88, pp. 547-570, 2010.
- [13] T. Kuroda, K. Saito, M. Kunii, and N. Kohno, “Numerical simulations of Myanmar cyclone Nargis and the associated storm surge Part I: Forecast experiment with a nonhydrostatic model and simulation of storm surge,” J. Meteor. Soc. Japan, Vol.88, pp. 521-545, 2010.
- [14] J. W. Tukey, “Exploratory data analysis,” Addison-Wesley Publishing Co., 1977.
- [15] R.McGill, J.W. Tukey, andW. A. Larsen, “Variations of box plots,” The American Statistician, Vol.32, pp. 12-16, 1978.
- [16] E. Kalnay, “Atmospheric modeling, data assimilation, and predictability,” Cambridge University Press, 2003.
- [17] T. Shibayama, H. Takagi, N. Hnu, and Y. Aoki, “Field survey of storm surge disaster due to cyclone Nargis in Myanmar,” J. Japan Soc. Civil Engineers B2 (Coastal Engineering), Vol.65, pp. 1376-1380, 2009 (in Japanese).
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.