single-dr.php

JDR Vol.6 No.4 pp. 443-450
(2011)
doi: 10.20965/jdr.2011.p0443

Review:

Global Threats and the Control of Multidrug-Resistant Tuberculosis

Kazuo Kobayashi*, Manabu Ato*,
and Sohkichi Matsumoto**

*Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan

**Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

Received:
January 5, 2011
Accepted:
February 15, 2011
Published:
August 1, 2011
Keywords:
surveillance, diagnostics, control strategy, chemotherapeutic intervention, vaccine research and development
Abstract

About one-third of the world’s population has been infected with Mycobacterium tuberculosis. Active disease develops in about 9 million people per year, and tuberculosis is responsible for 2 million deaths per year. The disease caused by this bacterium, tuberculosis (TB), remains one of the leading causes of mortality caused by infection worldwide and is a major threat to global health. The situation of TB is recently exacerbated by the emergence of highly drug-resistant forms of the disease-causing pathogen and synergy with human immunodeficiency virus/acquired immune deficiency syndrome, which greatly increases the risk of latent M. tuberculosis infection progressing to active disease. Multidrug-resistant (MDR) tuberculosis is defined as disease caused by strains of M. tuberculosis that are at least resistant to isoniazid and rifampicin; extensively drug-resistant (XDR) tuberculosis refers to disease caused by MDR strains that are also resistant to any fluoroquinolone and any of the injectable drugs used in treatment with second-line anti-tuberculosis drugs (amikacin, capreomycin, and kanamycin). MDR- and XDR-TB are serious threats to the progress that has been made in the control of tuberculosis worldwide over the past decade. In this review, we focus on threats of MDR-TB and the research and development of improved diagnostics, new chemotherapeutic agents, and vaccine candidates for MDR-TB.

Cite this article as:
K. Kobayashi, M. Ato, and <. Matsumoto, “Global Threats and the Control of Multidrug-Resistant Tuberculosis,” J. Disaster Res., Vol.6, No.4, pp. 443-450, 2011.
Data files:
References
  1. [1] D. B. Young, M. D. Perkins, and C. E. Barry III, “Confronting the Scientific Obstacles to Global Control of Tuberculosis,” J. Clin. Invest. 118, pp. 1255-1265, 2008.
  2. [2] Stop TB Partnership, The Global Plan to Stop TB,
    http://www.stoptb.org/global/plan/
    [accessed at January 6, 2011]
  3. [3] D. M. Morens, G. K. Folkers, and A. S. Fauci, “The Challenge of Emerging and Re-Emerging Infectious Diseases,” Nature 430, pp. 242-249, 2004.
  4. [4] E. Nathanson, P. Nunn, M. Uplekar, K. Floyd, E. Jaramillo, K. Lonnroth, D. Weil, and M. Raviglione, “MDR Tuberculosis. Critical Steps for Prevention and Control,” N. Engl. J. Med. 363, pp. 1050-1058, 2010.
  5. [5] World Health Organization. Stop TB Partnership. 2010/2011 Tuberculosis. Global Facts,
    http://www.who.int/tb/publications/2010/factsheet_tb_2010.pdf
  6. [6] Ministry of Health, Labour and Welfare of Japan,
    http://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou03/09.html
    [accessed at January 6, 2011].
  7. [7] Ministry of Health, Labour and Welfare of Japan, The Law Regarding Infectious Disease Prevention and Medical Care for the Patients,
    http://www.mhlw.go.jp/english/wp/wp-hw2/part2/p3_0028.pdf
    [accessed at February 10, 2011]
  8. [8] Stop TB Partnership Japan, Drug-resistant Tuberculosis, http://www.stoptb.jp/about/mdr_tb/
    [accessed at February 10, 2011]
  9. [9] World Health Organization, Multidrug and Extensively Drugresistant TB (M/XDR-TB), 2010 Global Report on Surveillance and Response,
    http://whqlibdoc.who.int/publications/2010/9789241599191_eng.pdf
  10. [10] Nunn, P. Stop TB Partnership, MDR, XDR TB and HIV: Global Data, Approaches, and Operational Research Issues, http://www.stoptb.org/wg/tb_hiv/assets/documents/MDR_XD˜1.pdf
  11. [11] P. M. Small andM. Pai, “Tuberculosis Diagnosis,” Time for a Game Change, N. Engl. J. Med. 363, pp. 1070-1071, 2010.
  12. [12] D. B. Young, M. D. Perkins, and C. E. Barry III, “Confronting the Scientific Obstacles to Global Control of Tuberculosis,” J. Clin. Invest. 118, pp. 1255-1265, 2008.
  13. [13] I. Comas and S. Gagneux, “The Past and Future of Tuberculosis Research,” PLoS Pathog. 5: e1000600, 2009.
  14. [14] The New Diagnostics Working Group of the Stop TB Partnership, Pathways to better Diagnostics for Tuberculosis, A Blueprint for the Development of TB Diagnostics,
    http://www.stoptb.org/wg/new_diagnostics/assets/documents/BluePrintTB_annex_web.pdf
  15. [15] D. A. J. Moore, C. A.W. Evans, R. H. Gilman, L. Caviedes, J. Coronel, A. Vivar, E. Sanchez, Y. Pinedo, J. C. Saravia, C. Salazar, R. Oberhelman,M. G. Hollm-Delgado, D. LaChira, A. R. Escombe, and J. S. Friedland, “Microscopic-Observation Drug-Susceptibility Assay for the Diagnosis of TB,” N. Engl. J. Med. 355, pp. 1539-1550, 2006.
  16. [16] M. Viveiros, C. Leandro, L. Rodrigues, J. Almeida, R. Bettencourt, I. Couto, L. Carrilho, J. Diogo, A. Fonseca, L. Lito, J. Lopes, T. Pacheco, M. Pessanha, J. Quirim, L. Sancho, M. Salfinger, and L. Amaral, “Direct Application of the INNO-LiPA Rif.TB Line-Probe Assay for Rapid Identification of Mycobacterium tuberculosis Complex Strains and Detection of Rifampin Resistance in 360 Smear-Positive Respiratory Specimens from an Area of High Incidence of Multidrug-Resistant Tuberculosis,” J. Clin. Microbiol. 43, pp. 4880-4884, 2005.
  17. [17] C. C. Boehme, P. Nabeta, D. Hillemann, M. P. Nicol, S. Shenai, F. Krapp, J. Allen, R. Tahirli, R. Blakemore, R. Rustomjee, A. Milovic, M. Jones, S. M. O’Brien, D. H. Persing, S. Ruesch-Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, and M. D. Perkins, “Rapid Molecular Detection of Tuberculosis and Rifampin Resistance,” N. Engl. J. Med. 363, pp. 1005-1015, 2010.
  18. [18] D. G. Russell, C. E. Barry III, and J. L. Flynn, “Tuberculosis: What We Don’t Know Can, and Does, Hurt Us,” Science 328, pp. 852-856, 2010.
  19. [19] D. J. Murphy and J. R. Brown, “Novel Drug Target Strategies Against Mycobacterium tuberculosis,” Curr. Opin. Microbiol. 11, pp. 422-427, 2008.
  20. [20] A. Koul, E. Arnoult, N. Lounis, J. Guillemont, and A. Koen, “The Challenge of New Drug Discovery for Tuberculosis,” Nature 469, pp. 483-490, 2011.
  21. [21] B. V. Nikonenko, M. Protopopova, R. Samala, L. Erick, and C. A. Nacy, “Drug Therapy of Experimental Tuberculosis (TB): Improved Outcome by Combining SQ109, a New Diamine Antibiotic, with Existing TB Drugs,” Antimicrob. Agents Chemother. 51, pp. 1563-1565, 2007.
  22. [22] A. H. Diacon, A. Pym, M. Grobusch, R. Patientia, R. Rustomjee, L. Page-Shipp, C. Pistorius, R. Krause, M. Bogoshi, G. Churchyard, A. Venter, J. Allen, J. C. Palomino, T. De Marez, R. P. G. van Heeswijk, N. Lounis, P. Meyvisch, J. Verbeeck, W. Parys, K. de Beule, K. Andries, and D. F. M. Neeley, “The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis,” N. Engl. J. Med. 360, pp. 2397-2405, 2009.
  23. [23] M. Matsumoto, H. Hashizume, T. Tomishige, M. i. Kawasaki, H. Tsubouchi, H. Sasaki, Y. Shimokawa, and M. Komatsu, “A Nitro-Dihydro-Imidazooxazole Derivative with Promising Action Against Tuberculosis in Vitro and in Mice,” OPC-67683, PLoS Med. 3: e466, 2006.
  24. [24] R. Singh, U. Manjunatha, H. I. M. Boshoff, Y. H. Ha, P. Niyomrattanakit, R. Ledwidge, C. S. Dowd, Y. Lee, P. Kim, L. Zhang, S. Kang, T. H. Keller, J. Jiricek, and C. E. Barry III, “PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release,” Science 322, pp. 1392-1395, 2008.
  25. [25] K. Duncan and C. E. Barry III, “Prospects for New Antitubercular Drugs,” Curr. Opin. Microbiol. 7, pp. 460-465, 2004.
  26. [26] P. Andersen, “Tuberculosis Vaccines,” An Update. Nat. Rev. Microbiol. 5, pp. 484-487, 2007.
  27. [27] B. Beresford and J. C. Sadoff, “Update on Research and Development Pipeline: Tuberculosis Vaccines,” Clin. Infect. Dis. 50, pp. S178-S183, 2010.
  28. [28] C. R. Sander, A. A. Pathan, N. E. R. Beveridge, I. Poulton, A. Minassian, N. Alder, J. Van Wijgerden, A. V. S. Hill, F. V. Gleeson, R. J. O. Davies, G. Pasvol, and H. McShane, “Safety and Immunogenicity of a New Tuberculosis Vaccine, MVA85A, in Mycobacterium tuberculosis-Infected Individuals,” Am. J. Respir. Crit. Care Med. 179, pp. 724-733, 2009.
  29. [29] S. G. Reed, R. N. Coler, W. Dalemans, E. V. Tan, E. C. DeLa Cruz, R. J. Basaraba, I. M. Orme, Y. A. W. Skeiky, M. R. Alderson, K. D. Cowgill, J. P. Prieels, R. M. Abalos, M. C. Dubois, J. Cohen, P. Mettens, and Y. Lobet, “Defined Tuberculosis Vaccine, Mtb72F/AS02A, Evidence of Protection in Cynomolgus Monkeys,” Proc. Natl. Acad. Sci. USA 106, pp. 2301-2306, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jul. 16, 2019