Review:
Prospects of Debris Flow Studies from Constitutive Relations to Governing Equations
Shinji Egashira
NEWJEC Inc., Honjo Higashi 2-3-20, Kita-ku, Osaka 531-0074, Japan
- [1] C. L. Chen, “General Solutions for Viscoplastic Debris Flow,” J. of Hydraulic Eng., Vol.114, No.3, pp. 259-282, 1988.
- [2] S. Egashira, K. Ashida, H. Yajima, and J. Takahama, “Constitutive Equations of Debris Flow, Annuals of the Disaster Prevention Research Institute,” Kyoto Univ., No.32, B-2, pp. 487-501, 1989 (in Japanese).
- [3] S. Egashira and K. Ashida, “Unified View of the Mechanics of Debris Flow and Bed Load,” Advances inMicromechanics of Granular Materials (Shen H. H. etal. Eds), Elsevier, pp. 391-400, 1992.
- [4] S. Egashira, “Mechanism of Sediment Erosion and Deposition of Debris Flow,” J. Japan Society of Erosion Control Eng., Vol.46, No.1 (186), pp. 45-49, 1993 (in Japanese).
- [5] S. Egashira, K. Miyamoto, and T. Itoh, “Bed-Load Rate in View of Two Phase Flow Dynamics,” Annual J. of Hydraulic Engineering, JSCE, Vol.41, pp. 789-794, 1997a (in Japanese).
- [6] S. Egashira, K. Miyamoto, and T. Ito, “Constitutive Equations of Debris-Flow and Their Applicability,” Proc. of 1st International Conference on Debris-flow Hazards Mitigation, C. L. Chen (Eds.), ASCE: NewYork; pp. 340-349, 1997b.
- [7] S. Egashira, N. Honda, and T. Itoh, “Experimental Study on the Entrainment of Bed Material into Debris Flow,” Phys. Chem. Earth (C), Vol.26, No.9, pp. 645-650, 2001.
- [8] S. Egashira, T. Itoh, and K. Miyamoto, “Debris Flow Simulations for San Julian Torrents in Venezuela,” Proc. of the 3rd IAHR Symposium on River, Coastal and Estuarine Morphodynamics RCEM 2003, pp. 976-986.
- [9] S. Egashira and T. Itoh, “Paradoxiacal Discussions on Sediment Transport Formulas,” River, Coastal and Estuarine Morphodynamics: RCEM. Parker and Garcia (Eds.), Taylor and Francis Group, London, pp. 33-38, 2005.
- [10] S. Egashira, “Review of Research Related to Sediment Disaster Mitigation,” J. of Disaster Research, Vol.2, No.1, pp. 11-18, 2007.
- [11] T. Itoh and S. Egashira, “Importance of Correction Factor Associated with Sediment Concentration and Velocity Distribution in Debris Flow Simulations,” J. of Hydro-science and Hydraulic Engineering, JSCE, Vol.23, No.2, pp. 1-12, 2005.
- [12] R. M. Iverson and R. P. Denlinger, “Flow of Variably Fluidized Granular Masses Across Three-Dimensional Terrain – 1. Coulomb Mixture Theory,” J. Geophysical Research, 106, No.B1, pp. 537-552, 2001.
- [13] P. Y. Julien and Y. Lan, “Rheology of Hyper-Concentrations,” J. of Hydraulic Eng., Vol.117, No.3, pp. 346-353, 1991.
- [14] K. Kawaike, K. Inoue, K. Toda, and T. Nakai, “Effects of Sediment Yield on Inundation Flow in a Hillside City,” J. of Hydroscience and Hydraulic Engineering, Vol.20, No.1, pp. 151-166, 2002.
- [15] K. Miyamoto and T. Itoh, “Numerical Simulation Method of Debris Flow Introducing the Erosion Rate Equation,” J. of the Japan Society of Erosion Control Engineering (JSECE), Vol.55, No.2, pp. 24-35, 2002 (in Japanese).
- [16] K. Miyamoto and Y. Tsurumi, “Mechanics of Debris Flow Over a Rigid Bed,” J. of Disaster Research, Vol.5, No.3, pp. 274-279, 2010.
- [17] K. Miyamoto, “Numerical Simulation of Landslide Movement and Unzen-Mayuyama Disdaster in 1792, Japan,” J. of Disaster Research, Vol.5, No.3, pp. 280-287, 2010.
- [18] H. Nakagawa, T. Takahashi, Y. Satofuka, and K. Kawaike, “Numerical Simulation of Sediment Disasters Caused by Heavy Rainfall in the Camuri Grande Basin, Venezuela 1999,” Proc. of 3rd Int. Conf. Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Rickenmann & Chen (Eds.), Rotterdam, Millpress, pp. 671-682, 2003.
- [19] H. Nakagawa, T. Takahashi, T. Sawada, and A. Ishibashi, “Estimation of a Debris Flow Hydrograph and Analysis of Evacuation Action Using GIS,” J. of Hydroscience and Hydraulic Engineering, Vol.17, No.1, pp. 73-85, 1999.
- [20] O’Brien and P. Y. Julien, “Laboratory Analysis of Mudflow Properties,” J. of Hydraulic Eng., Vol.114, No.8, pp. 877-887, 1988.
- [21] S. Okuda, H. Suwa, K. Okunishi, K. Yokoyama, and M. Nakano, “Observation of theMotion of Debris Flow and its Geomorphological Effects,” Zeitschrift fur Geomorphology, Suppl.-Bd.35, pp. 142-163, 1980.
- [22] R. Osti, S. Egashira, and T. Itoh, “Prediction of 1999- San Julian Debris Flows Based on Dependent and Independent Occurrences,” Annual J. of Hydraulic Engineering, JSCE, Vol.48, pp. 913-918, 2004.
- [23] Y. Satofuka and T. Mizuyama, “Numerical Simulation on a Debris Flow in a Mountainous River with a Sabo Dam,” J. of the Japan Society of Erosion Control Engineering (JSECE), Vol.58, No.1, pp. 14-19, 2005 (in Japanese).
- [24] Y. Satofuka, T. Mori, T. Mizuyama, K. Ogawa, and K. Yoshino, “Prediction of Floods Caused by Landslide Dam Collapse,” J. of Disaster Research, Vol.5, No.3, pp. 288-295, 2010.
- [25] S. B. Savage and K. Hutter, “The motion of a Finite Mass of Granular Material Down a Rough Incline,” J. of Fluid Mech., Vol.199, pp. 177-215, 1989.
- [26] S. B. Savage and K. Hutter, “The Dynamics of Avalanches of Granular Materials from Initiation to Run-Out. Part 1: Analysis,” Acta Mechanica, 86, pp. 201-223, 1991.
- [27] H. Suwa, S. Okuda, and K. Yokoyama, “Observation System on Rocky Mudflow,” Bull. Disas. Prev. Res. Inst. Kyoto Univ., No.23, pp. 59-73, 1973 (in Japanese).
- [28] J. Takahama, Y. Fujita, and Y. Kondo, “Analysis Method of Transitional Flow from Debris Flow to Sediment Sheet Flow,” Annual J. of Hydraulics Engineering, JSCE, pp. 683-686, 2000 (in Japanese).
- [29] T. Takahashi, “Debris Flow on Prismatic Open Channel,” J. of Hydraulic Div., Vol.106, No.HY3, pp. 381-396, 1980.
- [30] T. Takahashi, “Debris Flow, IAHR Monograph Series,” Rotterdam: Balkema, 1991.
- [31] T. Takahashi and S. F. Kuang, “Formation of Debris Flow on Varied Slope Bed,” Annuals, DPRI, Kyoto University, No.29, B-2, pp. 343-359, 1986 (in Japanese).
- [32] T. Takahashi, H. Nakagawa, and Y. Satofuka, “Estimation of Debris Flow Hydrograph in the Camuri Grande River Basin,” Research Report on Natural Didaster, DPRI, Kyoto University, Kyoto, pp. 41-50, 2001.
- [33] T. Tsubaki, H. Hashimoto, and T. Suetsugi, “Grain Stress and Flow Properties of Debris Flow,” Proc. JSCE, No.317, pp. 79-91, 1982 (in Japanese).
- [34] K. Yamano (Miyamoto) and A. Daido, “The Mechanism of Granular Flow of Mixed Diameter Composed Two Diameters,” J. JSCE, No.357/II-3, pp. 25-34, 1985 (in Japanese).
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.